Project description:Total RNA was purified from keratinocytes isolated from FFPE arsenic-induced skin lesion samples collected from individuals exposed to high concentrations of arsenic exceeding 50 ppb in drinking water in Murshidibad district of West Bengal, India.
2018-06-01 | GSE102892 | GEO
Project description:Study of microbial diversity in plastic waste dumps at Kaliachak-I block, Malda, West Bengal, India
Project description:Russell’s viper (Daboia russelii) (RV), a category I medically important snake as well as a member of the “Big Four”, is responsible for a heavy toll of snake bite mortality and morbidity in Indian sub-continent. Epidemiological studies suggest highest incidence of RV envenomation in eastern India (EI). In this study the RV venom proteomes from Burdwan and Nadia, the two districts of West Bengal, eastern India was deciphered for the first time using tandem mass spectrometry analysis.
Project description:Polyethylene terephthalate (PET) is one of the most commonly used plastics, utilized in synthetic fibers, water containers, and food packaging. From the 1990s onwards, the demand for PET, and therefore its production, increased exponentially. This increased usage of PET has resulted in a staggering accumulation of undegraded plastic waste. Nearly 80% of the 6300 million tons of plastic waste that had been generated as of 2015 were accumulated in landfills or the natural environment. Moreover, the production of PET relies heavily on non‐renewable fossil fuels, exacerbating environmental concerns over its widespread use. In alignment with principles of environmental sustainability, the biotechnological upcycling of PET has recently emerged as a compelling solution. Since the discovery of PETase, a hydrolase capable of depolymerizing this polyester, enzymatic plastic breakdown is increasingly considered as a promising solution for managing PET waste. This enzyme and its improved derivatives, such as Fast‐PETase, enable the breakdown of PET into bis(2‐41 hydroxyethyl) terephthalate (BHET) and mono(2‐hydroxyethyl) terephthalate (MHET). Subsequently, the enzyme MHETase is responsible for further degradation of MHET into ethylene glycol and terephthalic acid. The metabolic capability of microorganisms to utilize these monomers of PET for growth has been explored in various biotechnological applications, especially in the context of bioremediation and bioconversion processes aimed at transforming plastic waste into useful products using genetically engineered bacteria.
2025-05-23 | PXD060720 | Pride
Project description:Metagenomic analysis of Hotspring soil samples of Kharasinpur Hot Spring, West Bengal