Project description:In this project, we report the detrimental effect of hydroxylamine, a quenching reagent for NHS-amine reaction, on phosphopeptides. The degree of phosphopeptide enrichment was greatly improved by a desalting method compared with a vacuum-drying method right after quenching reaction. We demonstrate that vacuum-drying in presence of hydroxylamine promotes β-elimination of phosphate groups from phosphoserine and phosphothreonine.
Project description:ADH5 encodes for the protein GSNOR, an alchol dehydrogenase acting as a denitrosylase. GSNOR reduces S-nitrosoglutathione (GSNO) to an unstable intermediate, S-hydroxylaminoglutathione, which then rearranges to form glutathione sulfonamide, or in the presence of GSH, forms oxidized glutathione (GSSG) and hydroxylamine
Project description:Comparing the performance of methylamine and hydroxylamine on phospho-peptide analysis, particularly in relation to the identification of more complex dose-dependent patterns.
Project description:TET proteins oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). 5fC and 5caC are excised by mammalian DNA glycosylase TDG, implicating 5mC oxidation in DNA demethylation. Here we show that the genomic locations of 5fC can be determined by coupling chemical reduction with biotin tagging. Genome-wide mapping of 5fC in mouse embryonic stem cells (mESCs) reveals that 5fC preferentially occurs at poised enhancers among other gene regulatory elements. Application to Tdg null mESCs further suggests that 5fC production coordinates with p300 in remodeling epigenetic states of enhancers. This process, which is not influenced by 5hmC, appears to be associated with further oxidation of 5hmC and commitment to demethylation through 5fC. Finally, we resolved 5fC at base-resolution by hydroxylamine-based protection from bisulfite-mediated deamination, thereby confirming sites of 5fC accumulation. Our results reveal roles of active 5mC/5hmC oxidation and TDG-mediated demethylation in epigenetic tuning at regulatory elements.
Project description:ESI-LC-MSMS result of byssal filament proteins from Barbatia virescens.
Byssal filament proteins were obtained with the hydroxylamine extraction method.
Project description:The extracellular matrix (ECM) is readily enriched by decellularizing tissues with non-denaturing detergents to solubilize and deplete the vast majority of cellular components. This approach has been used extensively to generate ECM scaffolds for regenerative medicine technologies and in 3D cell culture to model how the ECM contributes to disease progression. A highly-enriched ECM fraction can then be generated using a strong chaotrope buffer that is compatible with downstream bottom-up proteomic analysis or 3D cell culture experiments after extensive dialysis. With most tissues, an insoluble pellet remains that is rich in structural ECM components. Previously we showed that this understudied fraction represented approximately 80 percent of total fibrillar collagen from the lung and other ECM fiber components that are known to be covalently cross-linked. Here we present a hydroxylamine digestion approach for post-chaotrope insoluble ECM analysis with comparison to an established CNBr method for matrisome characterization. Because ECM characteristics vary widely among tissues, we chose five tissues that represent unique and diverse ECM abundances, composition and biomechanical properties. Hydroxylamine digestion is compatible with downstream proteomic workflows, yields high levels of ECM peptides from the insoluble ECM fraction and reduces analytical variability when compared to CNBr digestion.
2017-10-20 | PXD006428 | Pride
Project description:Sequencing of sludge samples from A hydroxylamine mediated continuous flow partial nitrification coupled with anammox system