Project description:Owing to the risk of insertional mutagenesis, viral transduction has been increasingly replaced by nonviral methods to generate induced pluripotent stem (iPS) cells. We report the use of ‘minicircle’ DNA, a vector type that is free of bacterial DNA and capable of high expression in cells. Here we use a single minicircle vector to generate transgene-free iPSCs from adult human adipose stem cells. (Note: Our Nature Methods publication included analysis of array data from GSM374067 and GSM374068 in conjunction with this series).
Project description:Owing to the risk of insertional mutagenesis, viral transduction has been increasingly replaced by nonviral methods to generate induced pluripotent stem (iPS) cells. We report the use of ‘minicircle’ DNA, a vector type that is free of bacterial DNA and capable of high expression in cells. Here we use a single minicircle vector to generate transgene-free iPSCs from adult human adipose stem cells. (Note: Our Nature Methods publication included analysis of array data from GSM378832 (Foreskin), GSM378833-GSM378838 (JT-iPSC), and GSM378817-GSM378820 (H1, H7, H9, H13, H14) in conjunction with this series).
2010-02-01 | GSE20033 | GEO
Project description:Minicircle hypervariable region (mHVR) amplicon sequencing
Project description:Owing to the risk of insertional mutagenesis, viral transduction has been increasingly replaced by nonviral methods to generate induced pluripotent stem (iPS) cells. We report the use of âminicircleâ DNA, a vector type that is free of bacterial DNA and capable of high expression in cells. Here we use a single minicircle vector to generate transgene-free iPSCs from adult human adipose stem cells. (Note: Our Nature Methods publication included analysis of array data from GSM378832 (Foreskin), GSM378833-GSM378838 (JT-iPSC), and GSM378817-GSM378820 (H1, H7, H9, H13, H14) in conjunction with this series). Total RNA from human adipose stem cells (hASC, n = 3 replicate samples), hASC-derived iPS cells using lentiviral factors (lenti-iPSC, n = 3 replicate samples), and minicircle-derived human iPS cells (mc-iPSC, n = 3 subclones from adipose tissue of three individual patients) was hybridized to nine Affymetrix GeneChip Human Genome U133 Plus 2.0 Arrays.
Project description:Interventions: experimental group :PD-1 Knockout Engineered T Cells
Primary outcome(s): Number of participants with Adverse Events and/or Dose Limiting Toxicities as a Measure of Safety and tolerability of dose of PD-1 Knockout T cells using Common Terminology Criteria for Adverse Events (CTCAE v4.0) in patients
Study Design: historical control
Project description:Mitochondrial DNA replication and gene expression are essential for cell survival. In Trypanosoma brucei, a protozoan animal and human parasite, the mitochondrial RNA polymerase (mtRNAP) plays roles in both transcription and DNA replication. This study identifies and characterizes the first mitochondrial transcription factor (mtTF1) in the Kinetoplastea. mtRNAP and mtTF1 form a high-molecular-weight complex that localizes to the kinetoplast DNA (kDNA) and is essential for parasite survival in both life cycle stages. Their localization is interdependent, and both proteins influence maxicircle replication, but not minicircle replication. Knockdown of either protein result in altered gene expression, particularly affecting the minor strand of the mitochondrial genome. Since mtTF1 is unique to the Kinetoplastea, it might prove to be a promising drug target.
Project description:Whole genome sequncing data of original/SHANK2 modified/SHANK2 knockout. Note that the SHANK2 knockout sample is a different sample from 1_0441_003. Please refer to other paper for the data.
Project description:A knockout clone has been generated for both FAM50A and FAM50B; knockout of the other gene is then performed and the transcriptome is analysed to look at the effect of dual gene loss.