Project description:Multiple myeloma is a relatively common B-cell malignancy that is currently incurable. Certain recurrent genetic abnormalities characteristics of different genetic subtypes have been described. Hyperdiploid myeloma characterized by recurrent trisomies is the most common genetic subtypes. However little is know about it's biology. Another common genetic abnormality is chromosome 13 deletion which is also associated with inferior prognosis. This abnormality is already present at the pre-malignant MGUS stage and is clonally selected with disease progression. Although it is biologically and clinically important the molecular consequence of chromosome 13 deletion is unknown. Keywords: disease subtype analysis
Project description:Multiple myeloma is a relatively common B-cell malignancy that is currently incurable. Certain recurrent genetic abnormalities characteristics of different genetic subtypes have been described. Hyperdiploid myeloma characterized by recurrent trisomies is the most common genetic subtypes. However little is know about it's biology. Another common genetic abnormality is chromosome 13 deletion which is also associated with inferior prognosis. This abnormality is already present at the pre-malignant MGUS stage and is clonally selected with disease progression. Although it is biologically and clinically important the molecular consequence of chromosome 13 deletion is unknown. Experiment Overall Design: Hyperdiploid myeloma was identified using FISH. The gene expression profile of hyperdiploid MM is compared to that of non-hyperdiploid myeloma to identify differentially expressed genes. Molecular heterogeneity within H-MM is analyzed using unsupervised techniques. The distinctive subgroups identified are also tested in MGUS/SMM and NH-MM. The clinical relevance of these subtypes of hyperdiploid myeloma is then analyzed by correlating with relevant clinical information. Chromosome 13 deleted and undeleted MM are identified by FISH and their gene expression profile compared to identify molecular signature.
Project description:Background and objective: The chromosome 13 deletion (del(13)) represents one of the most frequent chromosomal alterations in multiple myeloma (MM). del(13) is associated with an unfavorable prognosis, although there is an increasing agreement that its prognostic relevance has to be related to the ploidy status and the presence of different chromosomal translocations. This study is aimed at providing a comprehensive analysis of the transcriptional features of del(13) in MM. Design and methods: Highly purified plasma cells from 80 newly diagnosed MM patients were characterized by means of FISH and high-density oligonucleotide microarray for gene expression profiling and chromosomal alterations. Results: We identified 67 differentially expressed genes in the del(13)+ and del(13)- groups, all of which downregulated in the del(13)+ cases: 44 mapped along the whole chromosome 13, seven on chromosome 11 and three on chromosome 19. Functional analyses of the selected genes indicated their involvement in protein biosynthesis, ubiquitination and transcriptional regulation. An integrative genomic approach based on regional analyses of the gene expression data identified distinct chromosomal regions whose global expression modulation could differentiate del(13)+, in particular the upregulation of 1q21-1q42 and the downregulation of 19p and almost the entire chromosome 11. FISH analyses confirmed the close relationship between del(13)+ and the presence of extracopies of 1q21-1q42 (P=6x10-4) or the absence of chromosome 11 and 19 trisomy (P=5x10-4). Interpretation and conclusions: Our results indicate that distinct types of chromosomal aberrations are closely related to the transcriptional profiles of del(13)+, suggesting that the contribution of del(13) on the malignancy should be considered together with associated abnormalities. Keywords: disease state analysis
Project description:Background and objective: The chromosome 13 deletion (del(13)) represents one of the most frequent chromosomal alterations in multiple myeloma (MM). del(13) is associated with an unfavorable prognosis, although there is an increasing agreement that its prognostic relevance has to be related to the ploidy status and the presence of different chromosomal translocations. This study is aimed at providing a comprehensive analysis of the transcriptional features of del(13) in MM. Design and methods: Highly purified plasma cells from 80 newly diagnosed MM patients were characterized by means of FISH and high-density oligonucleotide microarray for gene expression profiling and chromosomal alterations. Results: We identified 67 differentially expressed genes in the del(13)+ and del(13)- groups, all of which downregulated in the del(13)+ cases: 44 mapped along the whole chromosome 13, seven on chromosome 11 and three on chromosome 19. Functional analyses of the selected genes indicated their involvement in protein biosynthesis, ubiquitination and transcriptional regulation. An integrative genomic approach based on regional analyses of the gene expression data identified distinct chromosomal regions whose global expression modulation could differentiate del(13)+, in particular the upregulation of 1q21-1q42 and the downregulation of 19p and almost the entire chromosome 11. FISH analyses confirmed the close relationship between del(13)+ and the presence of extracopies of 1q21-1q42 (P=6x10-4) or the absence of chromosome 11 and 19 trisomy (P=5x10-4). Interpretation and conclusions: Our results indicate that distinct types of chromosomal aberrations are closely related to the transcriptional profiles of del(13)+, suggesting that the contribution of del(13) on the malignancy should be considered together with associated abnormalities. Experiment Overall Design: This series of microarray experiments contains the gene expression profiles of purified plasma cells (PCs) obtained from 90 newly diagnosed multiple myeloma (MM). PCs were purified from bone marrow specimens, after red blood cell lysis with 0.86% ammonium chloride, using CD138 immunomagnetic microbeads. The purity of the positively selected PCs was assessed by morphology and flow cytometry and was > 90% in all cases. 5 micrograms of total RNA was processed and, in accordance with the manufacturer's protocols, 15 micrograms of fragmented biotin-labelled cRNA were hybridized on GeneChip Human Genome U133A Arrays (Affymetrix Inc.). The arrays were scanned using the Agilent GeneChip Scanner G2500A. The images were acquired using Affymetrix MicroArray Suite (MAS) 5.0 software and the probe level data converted to expression values using the Bioconductor function for the Robust Multi-Array average (RMA) procedure (Irizarry et al, 2003), in which perfect match intensities are background adjusted and quantile-quantile normalised.
Project description:In order to investigate the patterns of genetic lesions in a panel of 23 Human Multiple Myeloma Cell Lines (HMCLs), we made a genomic integrative analysis involving FISH and both gene expression and genome-wide profiling approaches. The expression profiles of the genes targeted by the main IGH translocations showed that the WHSC1/MMSET gene involved in t(4;14)(p16;q32) was expressed at different levels in all of the HMCLs, and that the expression of the MAF gene was not restricted to the HMCLs carrying t(14;16)(q32;q23). Supervised analyses identified a limited number of genes specifically associated with t(4;14) and involved in different biological processes. The signature related to MAF/MAFB expression included the known MAF target genes CCND2 and ITGB7, as well as genes controlling cell shape and cell adhesion. Genomeâwide DNA profiling allowed the identification of a gain on chromosome arm 1q in 88% of the analyzed cell lines, together with recurrent gains on 8q, 18q, 7q and 20q; the most frequent deletions affected 1p, 13q, 17p and 14q; and almost all of the cell lines presented LOH on chromosome 13. Two hundred and twenty-two genes were found to be simultaneously overexpressed and amplified in our panel, including the BCL2 locus at 18q21.33. Our data further support the evidence of the genomic complexity of multiple myeloma and reinforce the role of an integrated genomic approach in improving our understanding of the molecular pathogenesis of the disease. Experiment Overall Design: 23 Human Multiple Myeloma Cell Lines (HMCLs)
Project description:PURPOSE. The deregulation of CCND1, CCND2 and CCND3 genes represents a common event in multiple myeloma (MM). The recently proposed TC classification grouped MM patients into five classes on the basis of their cyclins D expression profiles and the presence of the main translocations involving the immunoglobulin heavy-chain locus (IGH) at 14q32. In this study, we provide a molecular characterization of the identified TC groups. MATERIALS AND METHODS. The gene expression profiles of purified plasma cells from 50 MM cases were used to stratify the samples into the five TC classes and identify their transcriptional fingerprints. The cyclin D expression data were validated by means of real-time quantitative PCR analysis; fluorescence in-situ hybridization was used to investigate the cyclin D loci arrangements, and to detect the main IGH translocations and the chromosome 13q deletion. RESULTS. Class-prediction analysis identified 112 probe sets as characterizing the TC1, TC2, TC4 and TC5 groups, whereas the TC3 samples showed heterogeneous phenotypes and no marker genes. The TC2 group, which showed extra copies of the CCND1 locus and no IGH translocations or the chromosome 13q deletion, was characterized by the overexpression of genes involved in protein biosynthesis at translational level. A meta-analysis of published datasets validated the identified gene expression signatures. CONCLUSIONS. Our data contribute to the understanding of the molecular and biological features of distinct MM subtypes. The identification of a distinctive gene expression pattern in TC2 patients may improve risk stratification and indicate novel therapeutic targets. Experiment Overall Design: This series of microarray experiments contains the gene expression profiles of purified plasma cells (PCs) obtained from 50 newly diagnosed multiple myeloma (MM). PCs were purified from bone marrow specimens, after red blood cell lysis with 0.86% ammonium chloride, using CD138 immunomagnetic microbeads. The purity of the positively selected PCs was assessed by morphology and flow cytometry and was > 90% in all cases. 5 micrograms of total RNA was processed and hybridized to the Affymetrix HG-U133A chip following the manufacturer's instructions.
Project description:Virtually all patients with multiple myeloma become unresponsive to treatment over time. Relapsed/refractory multiple myeloma (RRMM) is accompanied by the clonal evolution of myeloma with heterogeneous genomic aberrations and profound changes of the bone marrow microenvironment (BME). However, the molecular mechanisms that drive drug resistance remain elusive. Here, we have analyzed the heterogeneous tumor cell population of 20 RRMM patients and its complex interaction network with the BME by single cell RNA-sequencing before/after treatment. Subclones with chromosome 1q-gain expressed a specific transcriptomic signature and frequently expanded during treatment. Furthermore, RRMM cells shaped an immune suppressive BME by upregulation of inflammatory cytokines and close interaction with the myeloid compartment. It was characterized by the accumulation of PD1+ γδ T-cells and tumor-associated macrophages as well as the depletion of hematopoietic progenitors. Thus, our study resolves transcriptional features of subclones in RRMM and mechanisms of microenvironmental reprogramming with implications for clinical decision-making.
Project description:Karyotypic instability, including numerical and structural chromosomal aberrations, represents a distinct feature of multiple myeloma (MM). 40-50% of patients displayed hyperdiploidy, defined by recurrent trisomies of non-random chromosomes. To characterize hyperdiploid (H) and nonhyperdiploid (NH) MM molecularly, we analyzed the gene expression profiles of 66 primary tumors, and used FISH to investigate the major chromosomal alterations. The differential expression of 225 genes mainly involved in protein biosynthesis, transcriptional machinery and oxidative phosphorylation distinguished the 28 H-MM from the 38 NH-MM cases. The 204 upregulated genes in H-MM mapped mainly to the chromosomes involved in hyperdiploidy, and the29% up-regulated genes in NH-MM mapped to 16q. The identified transcriptional fingerprint was robustly validated on a publicly available gene expression dataset of 64 MM cases; and the global expression modulation of regions on the chromosomes involved in hyperdiploidy was verified using a self-developed non-parametric statistical method. We showed that H-MM could be further divided into two distinct molecular and transcriptional entities, characterized by the presence of trisomy 11 and 1q-extracopies/chromosome 13 deletion, respectively. Our data reinforce the importance of combining molecular cytogenetics and gene expression profiling to define a genomic framework for the study of MM pathogenesis and clinical management. Keywords: other
Project description:Karyotypic instability, including numerical and structural chromosomal aberrations, represents a distinct feature of multiple myeloma (MM). 40-50% of patients displayed hyperdiploidy, defined by recurrent trisomies of non-random chromosomes. To characterize hyperdiploid (H) and nonhyperdiploid (NH) MM molecularly, we analyzed the gene expression profiles of 66 primary tumors, and used FISH to investigate the major chromosomal alterations. The differential expression of 225 genes mainly involved in protein biosynthesis, transcriptional machinery and oxidative phosphorylation distinguished the 28 H-MM from the 38 NH-MM cases. The 204 upregulated genes in H-MM mapped mainly to the chromosomes involved in hyperdiploidy, and the29% up-regulated genes in NH-MM mapped to 16q. The identified transcriptional fingerprint was robustly validated on a publicly available gene expression dataset of 64 MM cases; and the global expression modulation of regions on the chromosomes involved in hyperdiploidy was verified using a self-developed non-parametric statistical method. We showed that H-MM could be further divided into two distinct molecular and transcriptional entities, characterized by the presence of trisomy 11 and 1q-extracopies/chromosome 13 deletion, respectively. Our data reinforce the importance of combining molecular cytogenetics and gene expression profiling to define a genomic framework for the study of MM pathogenesis and clinical management. Experiment Overall Design: This series of microarray experiments contains the gene expression profiles of purified plasma cells (PCs) obtained from 102 newly diagnosed multiple myeloma (MM). PCs were purified from bone marrow specimens, after red blood cell lysis with 0.86% ammonium chloride, using CD138 immunomagnetic microbeads. The purity of the positively selected PCs was assessed by morphology and flow cytometry and was > 90% in all cases. 5 micrograms of total RNA was processed and, in accordance with the manufacturer's protocols, 15 micrograms of fragmented biotin-labelled cRNA were hybridized on GeneChip Human Genome U133A Arrays (Affymetrix Inc.). The arrays were scanned using the Agilent GeneChip Scanner G2500A. The images were acquired using Affymetrix MicroArray Suite (MAS) 5.0 software and the probe level data converted to expression values using the Bioconductor function for the Robust Multi-Array average (RMA) procedure (Irizarry et al, 2003), in which perfect match intensities are background adjusted and quantile-quantile normalised.
Project description:Histone deacetylases (HDACs) have been widely pursued as targets for anti-cancer therapeutics. However, many of these targets are universally essential for cell survival, which may limit the therapeutic window that can be achieved by drug candidates. By examining large collections of CRISPR/Cas9-based essentiality screens, we discovered a genetic interaction between HDAC1 and HDAC2 wherein each paralog is synthetically lethal with hemizygous deletion of the other. This collateral synthetic lethality is caused by recurrent chromosomal translocations that occur in diverse solid and hematological malignancies, including neuroblastoma and multiple myeloma. Using genetic deletion or dTAG-mediated degradation, we show that HDAC2 disruption suppresses the growth of HDAC1-deficient neuroblastoma in vitro and in vivo. Mechanistically, we find that targeted degradation of HDAC2 in these cells prompts the degradation of several members of the nucleosome remodeling and deacetylase (NuRD) complex, leading to diminished chromatin accessibility at HDAC2/NuRD-bound sites of the genome and impaired control of enhancer-associated transcription. Furthermore, we reveal that several of the degraded NuRD complex subunits are dependencies in neuroblastoma and multiple myeloma, providing motivation to develop paralog-selective HDAC1 or HDAC2 degraders. Altogether, we identify HDAC1/2 collateral synthetic lethality as a new therapeutic target and reveal a novel mechanism for exploiting NuRD-associated cancer dependencies.