Project description:Staphylococcus aureus is the most common cause of hospital-acquired infection. In healthy hosts outside of the health care setting, S.aureus is a frequent colonizer of the human nose but rarely causes severe invasive infection such as bacteremia, endocarditis, or osteomyelitis. To identify genes associated with community-acquired invasive isolates, regions of genomic variability, and the S.aureus population structure, we compared 61 community-acquired invasive isolates of S.aureus and 100 nasal carriage isolates from healthy donors using a microarray spotted with PCR products representing every gene from the seven S.aureus sequencing projects. The core genes common to all strains were identified, and 10 dominant lineages of S.aureus were clearly discriminated. Each lineage carried a unique combination of hundreds of core variable (CV) genes scattered throughout the chromosome, suggesting a common ancestor but early evolutionary divergence. Many CV genes are regulators of virulence genes or known or predicted to be expressed on the bacterial surface and to interact with the host during nasal colonization and infection. Within each lineage, isolates showed substantial variation in the carriage of mobile genetic elements and their associated virulence and resistance genes, indicating frequent horizontal transfer. However, we were unable to identify any association between lineage or gene and invasive isolates. We suggest that the S.aureus gene combinations necessary for invasive disease may also be necessary for nasal colonization and that community-acquired invasive disease is strongly dependent on host factors. Data is also available from http://bugs.sgul.ac.uk/E-BUGS-33
Project description:BACKGROUND: Infections with community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) are emerging worldwide. We investigated an outbreak of severe CA-MRSA infections in children following out-patient vaccination. METHODS AND FINDINGS: We carried out a field investigation after adverse events following immunization (AEFI) were reported. We reviewed the clinical data from all cases. S. aureus recovered from skin infections and from nasal and throat swabs were analyzed by pulse-field gel electrophoresis, multi locus sequence typing, PCR and microarray. In May 2006, nine children presented with AEFI, ranging from fatal toxic shock syndrome, necrotizing soft tissue infection, purulent abscesses, to fever with rash. All had received a vaccination injection in different health centres in one District of Ho Chi Minh City. Eight children had been vaccinated by the same health care worker (HCW). Deficiencies in vaccine quality, storage practices, or preparation and delivery were not found. Infection control practices were insufficient. CA-MRSA was cultured in four children and from nasal and throat swabs from the HCW. Strains from children and HCW were indistinguishable. All carried the Panton-Valentine leukocidine (PVL), the staphylococcal enterotoxin B gene, the gene complex for staphylococcal-cassette-chromosome mec type V, and were sequence type 59. Strain HCM3A is epidemiologically unrelated to a strain of ST59 prevalent in the USA, although they belong to the same lineage. CONCLUSIONS: We describe an outbreak of infections with CA-MRSA in children, transmitted by an asymptomatic colonized HCW during immunization injection. Consistent adherence to injection practice guidelines is needed to prevent CA-MRSA transmission in both in- and outpatient settings. Data is also available from http://bugs.sgul.ac.uk/E-BUGS-45
Project description:Comparing two subclones (Taiwan clone and Asian-Pacific clone) of CA-MRSA ST59. The Taiwan clone carries the Panton-Valentine leukocidin (PVL) genes, the staphylococcal chromosomal cassette mec (SCCmec) VT and is frequently isolated from patients with severe disease. The Asian-Pacific clone is PVL-negative, carries SCCmec IV, and is a frequent colonizer of healthy children.
Project description:Introduction Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) are increasingly isolated, with USA300-0114 being the predominant clone in the USA. Comparative whole genome sequencing of USA300 isolates collected in 2002, 2003 and 2005 showed a limited number of single nucleotide polymorphisms and regions of difference. This suggests that USA300 has undergone rapid clonal expansion without great genomic diversification. However, whole genome comparison of CA-MRSA has been limited to isolates belonging to USA300. The aim of this study was to compare the genetic repertoire of different CA-MRSA clones with that of HA-MRSA from the USA and Europe through comparative genomic hybridization (CGH) to identify genetic clues that may explain the successful and rapid emergence of CA-MRSA. Materials and Methods Hierarchical clustering based on CGH of 48 MRSA isolates from the community and nosocomial infections from Europe and the USA revealed dispersed clustering of the 19 CA-MRSA isolates. This means that these 19 CA-MRSA isolates do not share a unique genetic make-up. Only the PVL genes were commonly present in all CA-MRSA isolates. However, 10 genes were variably present among 14 USA300 isolates. Most of these genes were present on mobile elements. Conclusion The genetic variation present among the 14 USA300 isolates is remarkable considering the fact that the isolates were recovered within one month and originated from a confined geographic area, suggesting continuous evolution of this clone. Data is also available from <ahref=http://bugs.sgul.ac.uk/E-BUGS-108 target=_blank>BuG@Sbase</a>