ABSTRACT: Polyphosphate (polyP) is a ubiquitous and abundant compound found in bacteria, fungi, algae, plant, and animals. Among roles of intracellular polyP in bacteria are resistance and survival in the stationary phase of the growth against stress and stringent condition. Therefore, intracellular polyP is considered as a virulence factor of bacteria. In contrast, exogenous polyP has an antimicrobial activity against a variety of microorganisms. To date, much has been numerous studies of antibacterial effect of polyP against gram positive bacteria and fungi while relatively little reports have been published concerning gram negative bacteria. Here we describe bactericidal effect of polyP against gram negative periodontopathic bacterium, Porphyromonas gingivalis, and the transcriptional change by polyP in this bacterium. The bacterial growth was inhibited by polyP (chain length of P3~P75) at concentration of 0.02~0.03%, but not by Pi and PPi at the concentrations. polyP75 was chosen for further experiments, which suppressed the further growth of P. gingivalis as low as 0.03%. polyP75 completely killed the bacterial cells at the concentration of 0.035%. Microarray analysis was employed to identify genes that showed a greater than 1.5-fold difference in the expression by polyP75 at the concentration of 0.03%. It was found that 155 genes were up-regulated and 173 were down-regulated. Down-regulated genes include groups of energy metabolism-related genes, cell envelope-related genes, and genes in relation to biosynthesis of cofactors, prosthetic groups and carriers. Among the down-regulated genes were several involved in DNA replication, cell division protein, and biosynthesis of purines, pyrimidines, nucleosides and nucleotides. In contrast, a large number of ribosomal proteins, transciptional regulators and transposases were up-regulated. Oxidative stress-related genes and iron storage proteins also appeared to be increased in the expression. Real-time PCR confirmed up- and down-regulation of some selected genes. The overall results suggest that polyP has a bactericidal activity against P. gingivalis, interfering with translation, energy metabolism, DNA replication, cell division, and biosynthesis of purines, pyrimidines, nucleoside and nucleotides. polyP may be used as an agent for prevention and treatment of periodontal infections. Polyp-treated vs. untreated intensity ratio data linked below as a supplementary file. Keywords: agent response Twenty μg of each total RNA sample was used in separate hybridization experiments on identical arrays. The whole genome of 1,909 genes of P. gingivalis W83 (GenBank accession no. NC_002950) was submitted to NimbleGen System Inc. (Madison, WI) for microarray design and manufacture using maskless, digital micromirror technology. Five replicates of the genome were included per chip. An average of 19 different 60-base oligonucleotides (60-mer probes) represented each gene in the genome. Sixty-mer probes were selected such that each probe had at least three mismatches compared to all other 60-mers in the target genome. A quality control check (hybridization) was performed for each array, which contained on-chip control oligonucleotides. The arrays were analyzed using an Axon GenePix 4000B microarray scanner with associated software (Molecular Devices Corp., Sunnyvale, CA). Gene expression levels were calculated with NimbleScan Version 2.3 (NimbleGen). Relative signal intensities for each gene were generated using the Robust Multi-Array Average algorithm. The data were processed based on quantile normalization method using the R package. This normalization method aims to make the distribution of intensities for each array in a set of arrays the same. The background-adjusted, normalized, and log transformed intensity values were then analyzed using GeneSpring GX 7.3.1 (Silicon Genetics, Palo Alto, CA).