Metabolomics,Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Microarray for density study of mouse Adipose-derived Stromal Cells (ASCs)


ABSTRACT: Cytoskeletal tension is an intracellular mechanism through which cells convert a mechanical signal into a biochemical response, including production of cytokines and activation of various signaling pathways. Adipose-derived stromal cells (ASCs) were allowed to spread into large cells by seeding them at a low-density (1,250 cells/cm2), which was observed to induce osteogenesis. Conversely, ASCs seeded at a high-density (25,000 cells/cm2) featured small cells that promoted adipogenesis. RhoA and actin filaments were altered by changes in cell size. Blocking actin polymerization by Cytochalasin D influenced cytoskeletal tension and differentiation of ASCs. To understand the potential regulatory mechanisms leading to actin cytoskeletal tension, cDNA microarray was performed on large and small ASCs. Connective tissue growth factor (CTGF) was identified as a major regulator of osteogenesis associated with RhoA mediated cytoskeletal tension. Subsequently, knock-down of CTGF by siRNA in ASCs inhibited this osteogenesis. Therefore, we conclude that cytoskeletal tension is important for CTGF-regulated ASC osteogenic differentiation. Computed

ORGANISM(S): Mus musculus

SUBMITTER: Michael Longaker 

PROVIDER: E-GEOD-19924 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

Similar Datasets

2010-06-24 | E-GEOD-15361 | biostudies-arrayexpress
2006-01-06 | E-GEOD-3988 | biostudies-arrayexpress
2006-01-27 | E-GEOD-4111 | biostudies-arrayexpress
2010-06-24 | E-GEOD-15297 | biostudies-arrayexpress
2008-02-07 | E-GEOD-7947 | biostudies-arrayexpress
2010-05-12 | E-GEOD-18151 | biostudies-arrayexpress
2007-09-13 | E-GEOD-9027 | biostudies-arrayexpress
2010-06-24 | E-GEOD-16103 | biostudies-arrayexpress
2010-06-24 | E-GEOD-16107 | biostudies-arrayexpress
2005-08-11 | E-GEOD-3107 | biostudies-arrayexpress