RNA interference screening identifies the Insulin/IGF-1 receptor pathway as a mechanism of escape from hormone dependence in breast cancer
Ontology highlight
ABSTRACT: A significant fraction of breast cancers exhibit de novo or acquired resistance to estrogen deprivation. A kinome-wide siRNA screen identified a role for Insulin Receptor (InsR) in the hormone-independent growth of ER+ breast cancer cells We used gene expression microarrays to identify genes and pathways that are altered by insulin stimulation of ER+ MCF-7 human breast cancer cells. MCF-7 cells were treated with serum-free medium +/- insulin for 4 or 24 hrs prior to RNA harvest for analysis.
Project description:A significant fraction of breast cancers exhibit de novo or acquired resistance to estrogen deprivation. A kinome-wide siRNA screen identified a role for Insulin Receptor (InsR) in the hormone-independent growth of ER+ breast cancer cells We used gene expression microarrays to identify genes and pathways that are altered by insulin stimulation of ER+ MCF-7 human breast cancer cells.
Project description:A significant fraction of breast cancers exhibit de novo or acquired resistance to estrogen deprivation. To model resistance to aromatase inhibitor (AI) therapy, long-term estrogen-deprived (LTED) derivatives of MCF-7 and HCC-1428 cells were generated through culture for 3 and 7 months under hormone-depleted conditions, respectively. These LTED cells showed sensitivity to the ER downregulator fulvestrant under hormone-depleted conditions, suggesting continued dependence upon ER signaling for hormone-independent growth. To evaluate the role of ER in hormone-independent growth, LTED cells were treated +/- 1 uM fulvestrant x 48 h before RNA was harvested for gene expression analysis. MCF-7/LTED and HCC-1428/LTED cells were treated with 10% DCC-FBS with or without the estrogen receptor antagonist drug fulvestrant for 48 hrs prior to RNA harvest for array analysis. Three replicates per condition.
Project description:This SuperSeries is composed of the following subset Series: GSE22533: Breast cancer cells resistant to hormone deprivation maintain an estrogen receptor alpha-dependent, E2F-directed transcriptional program GSE27300: Estrogen-independent genomic ER binding analysis Refer to individual Series
Project description:Hyperactivation of phosphatidylinositol-3 kinase (PI3K) promotes escape from hormone dependence in estrogen receptor-positive breast cancer. A significant fraction of breast cancers exhibit de novo or acquired resistance to estrogen deprivation. We used gene expression microarrays to identify genes and pathways that are commonly dysregulated in ER+ cell lines with acquired hormone-independent growth. MCF-7, ZR75-1, MDA-361, and HCC-1428 ER+, estrogen-responsive breast cancer cells were cultured under hormone-depleted conditions (10% DCC-FBS) for several months until sustainable hormone-independent cell populations emerged. Parental and long-term estrogen-deprived (LTED) cells were treated with 10% dextran-coated charcoal-treated fetal bovine serum (DCC-FBS) x 24 hrs prior to RNA harvest for array analysis.
Project description:Insulin analogues are designed to improve the pharmacokinetic parameters compared to regular human insulin. This provides a sustained control of blood glucose levels in diabetic patients. All novel insulin analogues are tested for their mitogenic side effects, however these assays do not take into account the molecular mode-of-action of different insulin analogues. Insulin analogues can bind the insulin receptor (INSR) and the insulin-like growth factor-1 receptor (IGF1R) with different affinities and consequently will activate different downstream signaling pathways. Here we used a panel of MCF7 human breast cancer cell lines that selectively express either one of the isoforms of the INSR (IRA or IRB) or the IGF1R. We sought to study the role of the different receptors (IRA, IRB and IGF1R) in the mitogenic signaling of insulin-like molecules (including insulin, glargine, X10 (or AspB10) and IGF1). MCF7 IRA, MCF7 IRB or MCF7 IGF1R cells (as described in Arch Toxicol. 2014 Apr;88(4):953-66. doi: 10.1007/s00204-014-1201-2. Epub 2014 Jan 25.) were cultured in RPMI supplemented with 5% (v/v) CDFBS (Hyclone) and used for experiments. Cells have been exposed for 1 or 6 hours to 10 nM of the indicated insulin-like molecule. As a control sample a vehicle stimulation was performed that contained everything except the active compound.
Project description:Introduction: Although changes in microRNA (miRNA) expression correlate with breast cancer diagnostic markers, comparatively little is known about miRNA regulation by selective estrogen receptor modulators (SERMs), e.g., tamoxifen (TAM), or their role in endocrine-resistance. Methods: A microarray approach was used to identify miRNAs differentially expressed and regulated by 4-hydroxyTAM (4-OHT) in MCF-7/TAM-sensitive versus LY2 TAM/endocrine-resistant human breast cancer cells after 6 h treatment. The expression of specific miRNAs was validated by quantitative, real-time PCR. Control miRNAs and time-course studies showed important gene-, time-, and cell- specific differences in miRNA expression. Results: 97 miRNAs were differentially expressed in MCF-7 versus LY2 cells. Bioinformatic analyses to impute the biological significance of these miRNAs by identifying 36 predicted gene targets of these miRNAs from amongst those reported to be regulated by MCF-7 cells was performed and agreement was found in direction of anticipated regulation for 12 of those putative targets. Among the miRNAs differentially expressed in MCF-7 versus LY2 cells, and that putatively target mRNAs regulated by 4-OHT in MCF-7 cells, are: miRs- 10a, 21, 22, 29a, 93, 125b, 181, 200a, 200b, 200c; 205, 221, and 222. Q-PCR assessment showed agreement with microarray data: miR- 10a, 22, 125b, 181, and 222 are higher in LY2 whereas miR-21 and miR-200a are lower in LY2 than MCF-7. 4-OHT increased miR-10a, miR-21, miR-22, miR-125b, miR-181a, miR-200a, and miR-222 in MCF-7 cells and reduced miR-10a in LY2 cells. E2 reduced the miR-21expression in MCF-7 cells. Treatment with ICI 182,780 revealed that ER suppresses miR-10a, miR-21, miR-22, miR-200a, miR-221, and miR-222 expression in MCF-7 cells. Time-dependent changes in select miRNA expression were observed in control, E2, and 4-OHT-treated MCF-7 cells. ESR1/ER? was significantly lower in LY2 than MCF-7, commensurate with higher let-7 family member, miR-221, and miR-222 expression in LY2. Reflecting inverse association with miR-200 family expression, the expression of ZEB1 was higher in LY2 than MCF-7 cells and concomitantly, E-cadherin expression was absent in LY2 cells indicating that LY2 have undergone epithelial to mesenchymal transition. Conclusions: Our studies identifying miRNAs with opposite expression between the two cell lines, indicate the involvement of these miRNAs in endocrine resistance. The purpose of this experiment is: 1. To identify miRNAs that are regulated (up or down) by 4-OHT in MCF-7 and LY2 cell lines (comparison of values from EtOH versus 4-OHT treated cells). 2. To identify miRNAs that are differentially regulated under basal (EtOH) conditions between MCF-7 and LY2 cell lines. 3. To identify miRNAs that are differentially regulated by 4-OHT in MCF-7 versus LY2 cells.
Project description:The identification of gene regulatory modules is an important yet challenging problem in computational biology. While many computational methods have been proposed to identify regulatory modules, their initial success is largely compromised by a high rate of false positives, especially when applied to human cancer studies. New strategies are needed for reliable regulatory module identification. We present a new approach, namely multi-level support vector regression (ml-SVR), to systematically identify conditionspecific regulatory modules. The approach is built upon a multi-level analysis strategy designed for suppressing false positive predictions. With this strategy, a regulatory module becomes ever more significant as more relevant gene sets are formed at finer levels. At each level, a two-stage support vector regression (SVR) method is utilized to help reduce false positive predictions by integrating binding motif information and gene expression data; a significant analysis procedure is followed to assess the significance of each regulatory module. We applied our method to breast cancer cell line data to identify condition-specific regulatory modules associated with estrogen treatment. Experimental results show that our method can identify biologically meaningful regulatory modules related to estrogen signaling and action in breast cancer. Three independent total RNA samples were extracted for each cell line (MCF-7 and MCF-7-stripped) and the samples were arrayed using Affymetrix GeneChip HG-U133A. MCF-7-stripped denotes estrogen-deprived MCF-7 human breast cancer cells, which were grown in the absence of estrogen for 96 hours. We analyzed the enriched motifs and their targets for the genes significantly down-regulated in MCF-7-stripped cells as compared to MCF-7 cells.
Project description:Hyperactivation of phosphatidylinositol-3 kinase (PI3K) promotes escape from hormone dependence in estrogen receptor-positive breast cancer. A significant fraction of breast cancers exhibit de novo or acquired resistance to estrogen deprivation. We used gene expression microarrays to identify genes and pathways that are commonly dysregulated in ER+ cell lines with acquired hormone-independent growth. MCF-7, ZR75-1, MDA-361, and HCC-1428 ER+, estrogen-responsive breast cancer cells were cultured under hormone-depleted conditions (10% DCC-FBS) for several months until sustainable hormone-independent cell populations emerged.
Project description:Progesterone receptors (PRs) are critical context-dependent transcription factors required for normal uterine (PR-A) and mammary gland (PR-B) development. Progesterone is proliferative in the breast, where PR-target genes include paracrine factors that mediate mammary stem cell self-renewal. In the context of altered signal transduction that typifies breast tumorigenesis, dysregulated (i.e. hyper-phosphorylated) PRs likely contribute to tumor progression by promoting cancer cell pro-survival and proliferation. Notably, in breast cancer cells, progestin-bound PRs induce rapid MAPK activation leading to selective regulation of growth-promoting genes by phosphorylated PR species. Functional domains within PR that interact with c-Src and estrogen receptors (ER) have been identified as indirect routes to MAPK activation. Herein, we describe a common docking (CD) domain located within the PR-B N-terminus, a motif first described in MAPKs that facilitates direct interactions between MAPKs and MEK1 or MAPK-phosphatases (MKPs). Mutation of negatively-charged amino acids, previously determined to be critical for CD domain function in MAPKs, within PR-B (mCD PR) did not alter MEK-binding or progestin-induced rapid signaling (i.e. MAPK activation) and PR transcriptional activity as measured by PRE-luciferase (reporter) assays. Microarray gene-expression analysis revealed that endogenous genes regulated by wt PR, but not mCD PR, are involved in critical cellular pathways regulating growth, proliferation, survival, and cancer. mCD PR failed to undergo ligand-induced phosphorylation on Ser81, a ck2-dependent site required for progestin-regulation of select growth-promoting genes (BIRC3, HSD11β2, HbEGF). Progestin-induced PR Ser81 phosphorylation mapped to CD domain-dependent binding of PR-B to MKP3, but did not require phosphatase activity. Receptors containing either mutant CD domains (mCD PR) or point mutations of Ser81 (S79/81A PR) failed to upregulate STAT5 and Wnt1, key PR-target gene products that act as critical mediators of mammary stem cell expansion. Inhibition of JAK/STAT signaling blocked progestin-induced STAT5 and Wnt1 expression. ChIP assays demonstrated that wt, but not phospho-mutant (S79/81A), PR-B was co-recruited to a PRE-containing enhancer region of the Wnt1 gene along with MKP3, ck2 and STAT5. Our studies reveal a novel scaffolding action of MKP3 mediated by interaction with the PR CD domain and required for ck2-dependent PR Ser81 phosphorylation. Co-regulation of select target genes by phospho-Ser81 PR and phospho-STAT5 is likely a global mechanism required for the activation of growth promoting programs active during normal mammary gland development and relevant to mechanisms of breast cancer progression. The study contains 6 different sample groups measured in triplicate, for a total of 18 individual samples (18 arrays). From parental T47D-Y human breast cancer cell lines, we created three stable clones expressing (1) an empty vector (pSG5), (2) the wild type progesterone receptor isoform B (pSG5-PR-B), or (3) a mutant mutant CD domain PR-B. These cell lines were treated with either (1) vehicle control (ethanol) or (2) R5020 10e-8 M for 6 hours before total RNA harvest. Thus, the experiment contains three cell lines, and two treatments (6 sample groups) treated and analyzed in triplicate (18 microarrays). Standard Illumina HT-12v4 chip controls were used during hybridization.
Project description:Introduction: Mammalian target of rapamycin (mTOR) represents a key downstream intermediate for a myriad of oncogenic receptor tyrosine kinases. In the case of the insulin-like growth factor (IGF) pathway, the mTOR complex (mTORC1) mediates IGF-1 receptor (IGF-1R)-induced estrogen receptor alpha (ERα) phosphorylation/activation and leads to increased proliferation and growth in breast cancer cells. As a result, the prevalence of mTOR inhibitors combined with hormonal therapy has increased in recent years. Conversely, activated mTORC1 provides negative feedback regulation of IGF signaling via insulin receptor substrate (IRS)-1/2 serine phosphorylation and subsequent proteasomal degradation. Thus, the IGF pathway may provide escape (e.g. de novo or acquired resistance) from mTORC1 inhibitors. It is therefore plausible that combined inhibition of mTORC1 and IGF-1R for select subsets of ER-positive breast cancer patients presents as a viable therapeutic option. Methods: Using hormone-sensitive breast cancer cells stably transfected with the aromatase gene (MCF-7/AC-1), works presented herein describe the in vitro and in vivo antitumor efficacy of the following compounds: dalotuzumab (DALO; âMK-0646â; anti-IGF-1R antibody), ridaforolimus (RIDA; âMK-8669â; mTORC1 small molecule inhibitor) and letrozole (âLETâ, aromatase inhibitor). Results: With the exception of MK-0646, all single agent and combination treatment arms effectively inhibited xenograft tumor growth, albeit to varying degrees. Correlative tissue analyses revealed MK-0646 alone and in combination with LET induced insulin receptor alpha A (InsR-A) isoform upregulation (both mRNA and protein expression), thereby further supporting a triple therapy approach. Conclusion: These data provide preclinical rationalization towards the combined triple therapy of LET plus MK-0646 plus MK-8669 as an efficacious anti-tumor strategy for ER-positive breast tumors. 46 samples, 28 days post treatment