Project description:Cohesin is crucial for proper chromosome segregation, but also regulates gene transcription and organism development by poorly understood mechanisms. We find that in Drosophila, cohesin functionally interacts with Polycomb group (PcG) silencing proteins at both silenced and active genes. Cohesin unexpectedly facilitates binding of Polycomb Repressive Complex 1 (PRC1) to many active genes. In contrast, cohesin and PRC1 binding are mutually antagonistic at silenced genes. PRC1 depletion decreases phosphorylated RNA polymerase and mRNA at many active genes, but increases them at silenced genes. Cohesin also facilitates long-range interactions between Polycomb Response Elements in the invected-engrailed gene complex where it represses transcription. These multiple distinct cohesin-PcG interactions reveal a previously unrecognized role for PRC1 in facilitating productive gene transcription, and provide new insights into how cohesin and PRC1 control development. We extracted RNA from control and Ph RNAi-treated BG3 cells and measured changes in gene expression following Ph dose depletion by hybridization to Affymetrix arrays. We also extracted RNA from wild-type wing imaginal disc and measured control wing disc expression levels by hybridization to Affymetrix arrays.
Project description:Cohesin is crucial for proper chromosome segregation, but also regulates gene transcription and organism development by poorly understood mechanisms. We find that in Drosophila, cohesin functionally interacts with Polycomb group (PcG) silencing proteins at both silenced and active genes. Cohesin unexpectedly facilitates binding of Polycomb Repressive Complex 1 (PRC1) to many active genes. In contrast, cohesin and PRC1 binding are mutually antagonistic at silenced genes. PRC1 depletion decreases phosphorylated RNA polymerase and mRNA at many active genes, but increases them at silenced genes. Cohesin also facilitates long-range interactions between Polycomb Response Elements in the invected-engrailed gene complex where it represses transcription. These multiple distinct cohesin-PcG interactions reveal a previously unrecognized role for PRC1 in facilitating productive gene transcription, and provide new insights into how cohesin and PRC1 control development. ChIP-chip of cohesin, Polycomb group proteins, and RNA Polymerase II was performed in whole wing imaginal discs in developing wing imaginal disc, revealing that cohesin and Polycomb Repressive Complex 1 (PRC1) components co-bind with cohesin proteins at active genes. We then measured cohesin, Pc, and H3K27me3 separately in anterior and posterior wing imaginal discs and compared their binding at the invected-engrailed complex, which is silenced in the anterior disc, and expressed in its posterior. This confirmed that cohesin and PRC1 (Pc) co-bind at inv-en in its active state, and H3K27me3 and PRC1 (Pc) co-target inv-en in its silenced state. Comparison of binding between Pc-RJ and Pc-VP was performed, and revealed that Pc-VP is subject to epitope masking specifically at active genes. Finally, we measured cohesin and Pc binding in Drosophila ML-DmBG3-c2 cells, and found that they co-bind active genes in this cell line in as well as in wing imaginal discs. ChIP-chip of cohesin subunit Rad21 after PRC1 component Ph depletion, and ChIP-chip of PRC1 subunit Pc after Rad21 RNAi depletion, revealed that these two complexes affect one another's binding. Finally, ChIP-chip of Rpb3 (representing total Pol II) and Ser2P-Pol II (representing elongating Pol II) after PRC1 component Ph depletion revealed that PRC1 restrains entry of non-phosphorylated Pol II into gene bodies.
Project description:Cohesin is a well-known mediator of sister chromatid cohesion, but it also influences gene expression and development. These non-canonical roles of cohesin are not well understood, but are vital: gene expression and development are altered by modest changes in cohesin function that do not disrupt chromatid cohesion. To clarify cohesin’s roles in transcription, we measured how cohesin controls RNA polymerase II (Pol II) activity by genome-wide chromatin immunoprecipitation and precision global run-on sequencing. On average, cohesin-binding genes have more transcriptionally active Pol II and promoter-proximal Pol II pausing than non-binding genes, and are more efficient, producing higher steady state levels of mRNA per transcribing Pol II complex. Cohesin depletion frequently increases pausing at cohesin-binding genes, indicating that cohesin often facilitates transition of paused Pol II to elongation. In many cases this likely reflects a role for cohesin in transcriptional enhancer function. Strikingly, more than 95% of predicted extragenic enhancers bind cohesin, and cohesin depletion can reduce their association with Pol II, indicating that cohesin facilitates enhancer-promoter contact. Cohesin directly promotes transcription of the myc gene, and cohesin depletion reduces Pol II activity at most Myc target genes. The multiple transcriptional roles of cohesin revealed by these studies likely underlie the growth and developmental deficits caused by minor changes in cohesin activity. The PRO-seq method was used to measure transcriptionally engaged Pol II genome-wide in two replicates each of mock RNAi-treated, Nipped-B RNAi-treated, and Rad21 RNAi-treated ML-DmBG3-c2 cells.
Project description:Cohesin is a well-known mediator of sister chromatid cohesion, but it also influences gene expression and development. These non-canonical roles of cohesin are not well understood, but are vital: gene expression and development are altered by modest changes in cohesin function that do not disrupt chromatid cohesion. To clarify cohesinM-bM-^@M-^Ys roles in transcription, we measured how cohesin controls RNA polymerase II (Pol II) activity by genome-wide chromatin immunoprecipitation and precision global run-on sequencing. On average, cohesin-binding genes have more transcriptionally active Pol II and promoter-proximal Pol II pausing than non-binding genes, and are more efficient, producing higher steady state levels of mRNA per transcribing Pol II complex. Cohesin depletion frequently increases pausing at cohesin-binding genes, indicating that cohesin often facilitates transition of paused Pol II to elongation. In many cases this likely reflects a role for cohesin in transcriptional enhancer function. Strikingly, more than 95% of predicted extragenic enhancers bind cohesin, and cohesin depletion can reduce their association with Pol II, indicating that cohesin facilitates enhancer-promoter contact. Cohesin directly promotes transcription of the myc gene, and cohesin depletion reduces Pol II activity at most Myc target genes. The multiple transcriptional roles of cohesin revealed by these studies likely underlie the growth and developmental deficits caused by minor changes in cohesin activity. We performed ChIP-chip of Rpb3 (representing total Pol II), Ser2P-Pol II (representing elongating Pol II), and Cdk12 and CycT Pol II kinase components in Mock RNAi-treated and cohesin subunit Rad21 RNAi-treated ML-DmBG3-c2 cells, which revealed that cohesin depletion has a variety of effects on Pol II occupancy and modification, as well as on occupancy of Pol II kinases.
Project description:Wingless (Wg)/Wnt signaling is conserved in all metazoan animals and plays critical roles in development. The Wg/Wnt morphogen reception is essential for signal activation, whose activity is mediated through the receptor complex and a scaffold protein Dishevelled (Dsh). We report here that the exon junction complex (EJC) activity is indispensable for Wg signaling by maintaining an appropriate level of Dsh protein for Wg ligand reception in Drosophila. Transcriptome analyses in Drosophila wing imaginal discs indicate that the EJC controls the splicing of the cell polarity gene disc large 1 (dlg1), whose coding protein directly interacts with Dsh. Genetic and biochemical experiments demonstrate that Dlg1 protein acts independently from its role in cell polarity to protect Dsh protein from lysosomal degradation. More importantly, human orthologous Dlg protein is sufficient to promote Dvl protein stabilization and Wnt signaling activity, thus revealing a conserved regulatory mechanism of Wg/Wnt signaling by Dlg and EJC. whole transcriptome RNA-seq to examine mRNAs extracted from wildtype (i.e. overexpressing lacZ) and pre-EJC-defective (i.e. overexpressing tsu RNAi) wing discs, respectively.
Project description:Effects of Nipped-B and Rad21 sister chromatid cohesin proteins on gene expression data in ML-DmBG3 cells derived from Drosophila melanogaster larval central nervous system; We examined the effects of Nipped-B and Rad21 knockdown on gene expression in BG3 cells using microarrays that measure over 18,700 transcripts to (a) determine if the effects of cohesion on E(spl)-C and invected-engrailed expression are unique, (b) look for effects of cohesin on regulators of E(spl)-C and engrailed, and (c) obtain a comprehensive view of the effects of cohesin on gene expression. Experiment Overall Design: Effects of cohesin knockdown on E(spl)-C and invected-engrailed transcription vary over time, so we used two independent samples for three days after RNAi treatment, one four day and one six day sample for both Nipped-B and Rad21 knockdown, and mock RNAi controls for each time point. Experiment Overall Design: For RNAi treatment, cells were plated at 5x106 cells per 3 cm well. Media was replaced with 1 ml of Express Five SFM (Invitrogen) with 1% FCS, and 10 micrograms per ml insulin. The indicated amount of dsRNA was added per well. Media was adjusted to 3 ml and 10% FCS with Schneiderâs media after 2 hrs. Cells were replated as needed. Templates for dsRNA synthesis were made by PCR from cDNA templates using primers with T7 promoters (see supplementary file linked below). Equal amounts of two dsRNAs against each target were used.
Project description:H3K4me3 is a histone modification related to gene activation. LID is a demethylase acting on this residue and therefore, it could be important for proper expression of genes in Drosophila developing tissues, such as wing imaginal discs We used microarrays to analyse the changes in gene expression after lid depletion by RNAi, both in a wild type background and in a mutant background Two replicates were obtained on Nov 2010 for wild type white drosophila, GFP RNAi control and LID RNAi (on a LID mutant background).
Project description:This SuperSeries is composed of the following subset Series: GSE26895: Drosophila LID RNAi gene expression profiling GSE27078: LID ChIP-Seq in wild type, and H3K4me3 ChIP-Seq in wild type and lid RNAi Drosophila melanogaster GSE40599: POLIISER5 and POLIISER2 ChIP-Seq in mutant RNAi LID Drosophila Melanogaster Refer to individual Series
Project description:Screening for binding partners of the splicing factor SmD3 and changes in interaction upon depletion of the protein Ecdysoneless (Ecd) in the nubbin domain of third-instar larval wing imaginal discs.