Expression data from lung tissues of minipig with left lung ischemia-reperfusion
Ontology highlight
ABSTRACT: Lung ischemia-reperfusion (I/R) injury remains one of the common complications after various cardiopulmonary surgeries. I-R injury represents one potentially maladaptive response of the innate immune system which is featured by an exacerbated sterile inflammatory response triggered by tissue damage. Thus, understanding the key components and processes involved in sterile inflammation during lung I-R injury is critical to alter care and extend survival for patients with acute lung injury. We constructed a minipig surgical model of transient unilateral left pulmonary artery occlusion without bronchial involvement to create ventilated lung I-R injury. Lung tissues from minipig with sham operation (one sample), left side lung tissues (the operated side)(one sample) and right side lung tissues (the non-operated side)(one sample) from minipig with lung ischemia-reperfusion were submitted for gene expression array analysis.
Project description:To determine the influence of primary tumors on pre-metastatic lungs, we have employed whole genome microarray expression profiling as a discovery platform to identify gene signatures of alveolar type II epithelial cells (AT-II) in TLR3 deficient mice (Tlr3-/-) and wide-type (WT) littermates with tumor bearing. We subcutaneously inoculated Tlr3-/- and WT mice with Lewis lung carcinoma (LLC). Two weeks later, lung tissues from Tlr3-/- and WT mice were dissociated and AT-II cells were sorted. AT-II cells from mice without tumor bearing were set as controls. Primary tumor induced gene expression in AT-II cells from Tlr3-/- and WT mice was measured at 2 weeks after tumor inoculation subcutaneously. AT-II cells from mice without tumor bearing were set as controls.
Project description:Pulmonary function after birth is dependent upon surfactant lipids that reduce surface tension in the alveoli. The sterol-responsive element-binding proteins (SREBPs) are transcription factors regulating expression of genes controlling lipid homeostasis in many tissues. To identify the role of SREBPs in the lung, we conditionally deleted the SREBP cleavage-activating protein gene, Scap, in respiratory epithelial cells (Scap∆/∆) in vivo. Prior to birth (E18.5), deletion of Scap decreased the expression of both SREBPs and a number of genes regulating fatty acid and cholesterol metabolism. Nevertheless, Scap∆/∆ mice survived postnatally, surfactant and lung tissue lipids being substantially normalized in adult Scap∆/∆ mice. Although phospholipid synthesis was decreased in type II cells from adult Scap∆/∆ mice, lipid storage, synthesis, and transfer by lung lipofibroblasts were increased. mRNA microarray data indicated that SCAP influenced two major gene networks, one regulating lipid metabolism and the other stress-related responses. Deletion of the SCAP/SREBP pathway in respiratory epithelial cells altered lung lipid homeostasis and induced compensatory lipid accumulation and synthesis in lung lipofibroblasts. To identify the role of SREBPs in the lung, we conditionally deleted the SREBP cleavage-activating protein gene, Scap, in respiratory epithelial cells (Scap∆/∆) in vivo.Lung cRNA was hybridized to the murine genome MOE430 V2 chips.
Project description:Postnatal tissue quiescence is generally thought to be a default state in the absence of a proliferative stimulus such as injury. We now demonstrate that in the lung, quiescence in the adult is an actively maintained state and is regulated by paracrine hedgehog signaling. Epithelial-specific deletion of Sonic Hedgehog during normal homeostasis results in a proliferative expansion of the adjacent lung mesenchyme. Injury to the lung epithelium results in decreased hedgehog activation, accompanied by proliferative expansion of the adjacent mesenchyme. Moreover, reconstitution of Hedgehog signaling during epithelial injury attenuated the proliferative expansion of the adjacent mesenchyme. Hedgehog signaling maintains lung quiescence by attenuating PDGF signaling through blocking post-translational processing of PDGF receptor α/β into the mature isoforms. These results indicate that in postnatal tissues, epithelial cells can actively maintain mesenchymal quiescence via paracrine hedgehog activation, and that imbalances in this pathway could lead to aberrant mesenchymal expansion and postnatal disease. Fibroblasts were isolated from mouse lungs and grown in culture in triplicate wells. Samples were treated with vehicle or purmorphamine 5um for 24 hours and RNA was isolated for microarray.
Project description:Deletion of the gene encoding Foxa2, a winged helix transcription factor selectively expressed in respiratory epithelial cells, caused spontaneous pulmonary eosinophilic inflammation and goblet cell metaplasia. Loss of Foxa2 induced the recruitment and activation of myeloid dendritic cells (mDCs) and Th2 cells in the lung, and was associated with the increased production of T helper 2 (Th2) cytokines and chemokines. mRNA microarray analysis demonstrated that deletion of Foxa2 induced the expression of a number of mRNAs regulating pulmonary dendritic cell activation, Th2 mediated inflammation, and goblet cell differentiation. The spontaneous pulmonary inflammation and goblet cell metaplasia caused by loss of Foxa2 was inhibited by treatment of newborn Foxa2â??/â?? mice with monoclonal IL-4Ralpha antibody. Expression of Foxa2 in non-ciliated secretory cells (Clara cells) in vivo inhibited goblet cell differentiation induced by pulmonary allergen exposure. The respiratory epithelium plays a central role in the regulation of Th2-mediated inflammation and innate immunity in the developing lung in a process regulated by Foxa2. To investigate the role of Foxa2 and its downstream targets associated with the Th2 inflammation and goblet cell hyperplasia, RNAs were isolated from the lungs of Foxa2-/- and control littermates at PN15. Lung cRNA was hybridized to the murine genome MOE430 V2 chips.
Project description:The retina is often subjected to tractional forces in a variety of conditions, for instance, pathological myopia, proliferative vitreoretinopathy. As the predominant glial element in the sensory retina, Muller cells are responsible for the homeostatic and metabolic support of retinal neurons and active players in virtually all forms of retinal injury and disease. Besides, Muller cells span the entire retinal thickness, extending from the inner to the outer limiting membranes, with cell bodies located in the inner nuclear layer and lateral processes expanding into the plexiform layers of the tissue. Because of this unique morphology, Muller cells can sense even minute changes in the retinal structure because of the mechanical stretching of their long processes or side branches. Thus, itM-bM-^@M-^Ys reasonable to infer that Muller cells also participate in ocular diseases when the retina is overstretched. In this study, we aim to investigate the whole genome regulation of Muller cells under mechanical stretching, which may help in excluding possible molecular mechanisms that would account for many retinal diseases in which the retina is often subjected to mechanical forces. We used microarrays to identify patterns of gene expression changes induced by cyclic mechanical stretching in Muller cells. Rat Muller cells were seeded onto flexible bottom culture plates and subjected to a cyclic stretching regimen of 15% equibiaxial stretching for 1 and 24 h.Muller cells cultured under the same conditions but with no applied mechanical strain were considered as the unstretched control. At each time points (1 and 24 h), three totally independent experiments (3 stretched samples and 3 control samples) were conducted. Muller cells were selected for RNA extraction and hybridization on Affymetrix microarrays. Stretch (S); Control (C)
Project description:In the present study, goal was to scan the potential biomarker for acute kidney injury induced by aristolochic acid I (AAI).We utilized the microarry analysis to investigate the microRNA (miRNA) expression profile in kidneys from rat treated by 40mg/kg AA I for 2-6 days. miRNAs with significantly different expression of global miRNA expression profile were validated by qRT-PCR. For miRNAs still significantly disregulation, we further examined the expression in plasma of rats treated with AAI dosed at 10, 20 and 40mg/kg AAI for 2-6 days by qRT-PCR. miRNAs with significantly dysregulation in plasma, their expression in brain, liver and heart was examined for kicking out the non-specific disregulation in AAI induced acute kidney injury, so that the significant dysregulation miRNAs with specificity in kidney and plasma was found as potential biomarkers for AAI induced acute kidney injury. Five control and 15 kidneys treated with 40mg/kg AAI on day 2, 4 and 6 was examined by microarray.
Project description:The high concentration of Well5 cells was resuspended into 20μl PBS, the needle along the tibia direction, before reaching in a breakthrough sense, direct injection cells. At 7 days after injection, proximal tibia was able to reach mass production. At 20 days after injection, the proximal tibia mass increased.If prolonging exposure by BLI,this stage displayedthat tumor cell signalsbegan to lung metastasis. Osteosarcoma orthotopic lung metastasis model was successfully constructed. Total RNA was extracted from sorted osteosarcoma cells of the primary site and lung metastases using Trizol (Invitrogen). We used microarrays to detail the global programme of gene expression underlying cellularisation and identified distinct classes of up-regulated genes during osteosarcoma lung metastasis. In support of the notion that fibrosis marks the lung metastasis, the expression of numerous fibrosis-related genes such as FN1, COLs, and MMPs were upregulated from the primary site to lung metastasis in Well5-luc orthotopic inoculation model. Total RNA was extracted from sorted osteosarcoma cells using Trizol (Invitrogen). Gene expression profiling was conducted by Shanghai Biotechnology Corporation using Affymetrix U133 plus 2.0 arrays (Affymetrix, Santa Clara, CA). All data were analyzed according to the manufacturerâ??s protocol. Raw data generated from Affymetrix CEL files were normalized by RMA background correction; values were log2 transformed. For the enrichment of P values of each GO term, we used Fisherâ??s exact test to calculate P values and R package stats to calculate FDR (q value) by BH method (www.r-project.org).
Project description:The underlying mechanism of how the atopic lipids in skeletal muscle affect muscle growth remains elusive. Here we chose miniature Bama swine as our model to mimick human obesity and co-associated metabolic disorders by long time diet induction and study how the atopic fat accumulation in skeletal muscle influence muscle function. After 23 months high-fat high-sucrose diet (HFHSD) fed, the model minipig model of obesity accompanied with metabolic disorders like human, and they had increased body weight and extensive lipids deposition in adipose tissues (AT) and non-AT, especially in skeletal muscle. Further more, the mass of skeletal reduced greatly and the small area (0-2000μm2) muscle reduced after diet induced. The average fiber area of Gastroc reduced 25.2%, but no significant changes appeared in the other skeletal muscles. Antioxidant capacity of skeletal muscle also reduced. Microarray profiles showed genes related to fat deposition promotion (Peroxisome proliferator activated receptor γ, CCAAT/enhancer-binding protein α and apolipoprotein E), muscle growth inhibition (myostatin and p21) up regulated, and some other muscle cell differentiation related genes (myoD) down regulated. Meanwhile, adipokines like adiponectin and 11b-hydroxysteroid dehydrogenase type 1 (11βHSD1) which partake in the crosstalk between AT and skeletal muscles rose up. We draw a clear potential crosstalk pathway that, increased 11βHSD1 secreted by excess AT will promote the expression of the major inhibitor MSTN by activating corticosterone to cortisol, leading to the growth inhibition of skeletal muscle. Overall, this research announces how obesity affects skeletal muscle growth in a crosstalk sight. Male and female Bama minipigs, aged 6 months at the start of the study, were divided into the following two groups for 23 months of treatment. Bama minipigon control (CD group, N=3) were fed standard pig chow. The experimental group (N=6) were fed high-fat high-sucrose diet (53% basal diet, 37% sucrose, 10% lard, HFHSD).
Project description:Hepatic stellate cells (HSCs) experience phenotypic transformation, from the quiescent phenotype to the activated one, after different etiologies of liver injury. Liver fibrosis is then occurred upon the activation of HSCs. miR-16 deficiency is identified to be an important characteristic of HSCs activation. We used Affymetrix rat 230 2.0 arrays (Affymetrix, Santa Clara, U.S.A.) to uncover the global alternations of transcriptome under miR-16 restoration. We isolated quiescent hepatic stellate cells (HSCs) from adult male SD rats (normal control group) by in situ perfusion and density-gradient centrifugation. Activated HSCs were separated from rats of fibrosis model group, which were treated by 40% carbon tetrachloride (CCl4) for 8 weeks, by means of liver section, digestion and sequential centrifugation. Quiescent and activated HSCs were then divided into 4 groups at random, namely quiescent HSCs, activated HSCs, pLV-miR-16-treated HSCs and pLV-GFP-treated HSCs. The pLV-miR-16-treated group, pLV-GFP-treated group were infected with pLV-miR-16 and pLV-GFP, respectively.
Project description:The etiology of trauma-hemorrhage shock-induced acute lung injury has been difficult to elucidate due, at least in part, to the inability of in vivo studies to separate the non-injurious pulmonary effects of trauma-hemorrhage from the tissue injurious ones. To circumvent this in vivo limitation, we utilized a model of trauma-hemorrhagic shock (T/HS) in which T/HS-lung injury was abrogated by dividing the mesenteric lymph duct. In this way, it was possible to separate the pulmonary injurious response from the non-injurious systemic response to T/HS by comparing the pulmonary molecular response of rats subjected to T/HS which did and did not develop lung injury as well as to non-shocked rats. Utilizing high-density oligonucleotide arrays and treatment group comparisons of whole lung tissue collected at 3 hours after the end of the shock or sham-shock period, 139 of the 8,799 assessed genes were differentially expressed. Experiment Overall Design: Four groups of rats (n=3) were studied in order to identify changes in pulmonary gene expression associated with T/HS, both in the presence and absence of lung injury. These included trauma-sham shock (T/SS) rats which had a laparotomy (trauma) but were not subjected to hemorrhagic shock. These rats had no lung injury and served as controls for rats which were subjected to T/HS (laparotomy plus 90 min of shock) and had lung injury. Differences in gene expression between these two groups would represent both the effects of hemorrhagic shock as well as lung injury. To distinguish the gene response of hemorrhagic shock from the gene response associated with lung injury, gene expression was also compared between T/HS rats (hemorrhage and lung injury) and rats subjected to T/HS plus lymph duct ligation (T/HS-LDL), since the T/HS-LDL rats experienced hemorrhagic shock but had no measurable lung injury. Lastly, to identify hemorrhagic shock- modified genes, the pulmonary gene response of T/HS-LDL (hemorrhage without lung injury) were compared to rats subjected to T/SS plus LDL (no hemorrhage or lung injury). Three hours after the end of the 90 min shock or sham-shock period (i.e. 4.5 hrs after the induction of T/HS), the rats were sacrificed and specimens harvested for genechip analysis and histology.