Analysis of mRNA of leukocytes before and after exercise in 3 warmblood horses
Ontology highlight
ABSTRACT: Capacity of exercise and performance is the most valuable in the horses. They have been selected for strength, speed, and indurance trait. Athletic pheno types are influenced markedly by environment, management, and training. However, it has long been accepted that there are underlying genetic factors. To determine altered mRNA expression in circulating leukocytes of horses induced by exercise. Healthy neutered male warmblood horses were subjected to indoor exercise (trotting with alternative cantering for 6o minutes). Peripheral blood was collected from the jugular vein before and after the exercise, and subsequently buffy coat leukocytes were isolated by centrifugation. Total RNAs was isolated. Cyanine 3-labeled cRNA (complementary RNA) was generated from Agilentâs Low RNA Input Linear Amplification kit with 500 ng total RNA. Labeled cRNA was applied microarray (Agilent technologies, 8x60K) using Agilentâs Gene Expression Hybridization Kit. The present study revealed a subset of mRNAs in equine peripheral blood leukocytes affected by exercise, providing background information for genes associated with exercise in warm-blood horses. Three healthy, gelding warmblood horses between 9 and 17 yr were selected. 6 samples were collected containing 3 samples before exercise and 3 samples after exercise
Project description:Capacity of exercise and performance is the most valuable in the horses. They have been selected for strength, speed, and indurance trait. Athletic pheno types are influenced markedly by environment, management, and training. However, it has long been accepted that there are underlying genetic factors. To determine altered mRNA expression in circulating leukocytes of horses induced by exercise. Healthy neutered male warmblood horses were subjected to indoor exercise (trotting with alternative cantering for 6o minutes). Peripheral blood was collected from the jugular vein before and after the exercise, and subsequently buffy coat leukocytes were isolated by centrifugation. Total RNAs was isolated. Cyanine 3-labeled cRNA (complementary RNA) was generated from Agilent’s Low RNA Input Linear Amplification kit with 500 ng total RNA. Labeled cRNA was applied microarray (Agilent technologies, 8x60K) using Agilent’s Gene Expression Hybridization Kit. The present study revealed a subset of mRNAs in equine peripheral blood leukocytes affected by exercise, providing background information for genes associated with exercise in warm-blood horses.
Project description:Purpose: Next-generation sequencing (NGS) was used to select genes potentially associated with exercise adaptation in Arabian horses. Methods: Whole transcriptome profiling of blood was performed for untrained horses and horses from which samples were collected during at 3 different periods of training procedure (T1-during intense training period - March, T2- before starts - May and T3 -after flat racing season - October). The muscle transcriptome sequencing was performed for 37 blood samples using Illumina HiScan SQ in 75 single-end cycles. The quantifying transcript abundances was made using the RSEM supported by STAR aligner. The raw reads were aligned to the Equus caballus reference genome. Differentially expressed genes in blood tissue were detected by DESeq2. The RNA-seq results were validated using by qPCR. Results: The increase of the number of DEGs between subsequent training periods has been observed and the highest amount of DEGs was detected between untrained horses (T0) and horses at the end of the racing season (T3) â 440. The comparison of transcriptome of T2 vs T3 and T0 vs T3 showed a significant advantage of up-regulated genes during long-term exercise (up-regulation of 266 and 389 DEGs in T3 period compared T2 and T0; respectively). Our results showed that the largest number of identified genes encoded transcription factors, nucleic acid binding proteins and G-protein modulators, which mainly were transcriptional activated at the last training phase (T3) . Moreover, in the T3 period the identified DEGs represented genes coded for cytoskeletal proteins including actin cytoskeletal proteins and kinases. The most abundant exercise-upregulated genes were involved in pathways important in regulating the cell cycle (PI3K-Akt signaling pathway), cell communication (cAMP-dependent pathway), proliferation, differentiation and apoptosis as well as immunity processes (Jak-STAT signaling pathway). We also observed exercise induced expression of genes related in regulation of actin cytoskeleton, gluconeogenesis (FoxO signaling pathway; Insulin signaling pathway), glycerophospholipid metabolism and calcium signaling. Conclusions: TOur results allow to identify changes in genes expression profile following training schedule in Arabian horses. Based on comparison analysis of blood transcriptomes, several exercise-regulated pathways and genes most affected by exercise were detected. We pinpointed overrepresented molecular pathways and genes essential for exercise adaptive response via maintaining of body homeostasis. The observed transcriptional activation of such gene as LPGAT1, AGPAT5, PIK3CG, GPD2, FOXN2, FOXO3, ACVR1B and ACVR2A can be a base for further research in order to identify genes potentially associated with race performance in Arabian horses. Such markers will be essential to choice the training type, and could result in differences in racing performance specific to various breeds. The blood transcriptome sequencing was performed for 37 samples collected form Arabian horses using Illumina HiScan SQ in75 single-end cycles and in 3-4 technical repetitions.repetitions.
Project description:Purpose: Next-generation sequencing (NGS) was used to select genes potentially associated with exercise adaptation in Arabian horses. Methods: Whole transcriptome profiling of blood was performed for untrained horses and horses from which samples were collected during at 3 different periods of training procedure (T1-during intense training period - March, T2- before starts - May and T3 -after flat racing season - October). The muscle transcriptome sequencing was performed for 37 blood samples using Illumina HiScan SQ in 75 single-end cycles. The quantifying transcript abundances was made using the RSEM supported by STAR aligner. The raw reads were aligned to the Equus caballus reference genome. Differentially expressed genes in blood tissue were detected by DESeq2. The RNA-seq results were validated using by qPCR. Results: The increase of the number of DEGs between subsequent training periods has been observed and the highest amount of DEGs was detected between untrained horses (T0) and horses at the end of the racing season (T3) – 440. The comparison of transcriptome of T2 vs T3 and T0 vs T3 showed a significant advantage of up-regulated genes during long-term exercise (up-regulation of 266 and 389 DEGs in T3 period compared T2 and T0; respectively). Our results showed that the largest number of identified genes encoded transcription factors, nucleic acid binding proteins and G-protein modulators, which mainly were transcriptional activated at the last training phase (T3) . Moreover, in the T3 period the identified DEGs represented genes coded for cytoskeletal proteins including actin cytoskeletal proteins and kinases. The most abundant exercise-upregulated genes were involved in pathways important in regulating the cell cycle (PI3K-Akt signaling pathway), cell communication (cAMP-dependent pathway), proliferation, differentiation and apoptosis as well as immunity processes (Jak-STAT signaling pathway). We also observed exercise induced expression of genes related in regulation of actin cytoskeleton, gluconeogenesis (FoxO signaling pathway; Insulin signaling pathway), glycerophospholipid metabolism and calcium signaling. Conclusions: TOur results allow to identify changes in genes expression profile following training schedule in Arabian horses. Based on comparison analysis of blood transcriptomes, several exercise-regulated pathways and genes most affected by exercise were detected. We pinpointed overrepresented molecular pathways and genes essential for exercise adaptive response via maintaining of body homeostasis. The observed transcriptional activation of such gene as LPGAT1, AGPAT5, PIK3CG, GPD2, FOXN2, FOXO3, ACVR1B and ACVR2A can be a base for further research in order to identify genes potentially associated with race performance in Arabian horses. Such markers will be essential to choice the training type, and could result in differences in racing performance specific to various breeds.
Project description:The adaptive response to extreme endurance exercise might involve transcriptional and translational regulation by microRNAs (miRNAs). Therefore, the aim of this study was to define an integrative analysis of blood transcriptome and miRNome in horses before and after a long endurance ride (160 km) using equine microarrays. A total of 2,453 genes and 162 miRNAs were found to be differentially expressed (DEG) between animals at rest and after the endurance ride. To gain understanding of the biological functions regulated by the differentially expressed miRNA, we used a hypergeometric test analysis. Notably, we detected 42 differentially expressed miRNAs that putatively regulate a total of 350 depleted DEGs, involved in glucose metabolism, fatty acid oxidation, mitochondrion biogenesis, and immune response pathways. Graphical Gaussian models in an independent validation set of animals confirmed that 4 miRNAs could be strong candidate regulatory molecules for endurance exercise adaptation. This study represents, to the best of our knowledge, the first integrated comprehensive overview of the miRNA-mRNA co-regulation networks that may play a central role in controlling post-transcriptomic regulations during endurance exercise in horses. Sixty-one Arabian or half-breed Arabian horses (20 females and 41 geldings) aged 10 ± 2 years (±SEM) were recruited on voluntary basis of the owner on three 160 km endurance rides.
Project description:The adaptive response to extreme endurance exercise might involve transcriptional and translational regulation by microRNAs (miRNAs). Therefore, the aim of this study was to define an integrative analysis of blood transcriptome and miRNome in horses before and after a long endurance ride (160 km) using equine microarrays. A total of 2,453 genes and 162 miRNAs were found to be differentially expressed (DEG) between animals at rest and after the endurance ride. To gain understanding of the biological functions regulated by the differentially expressed miRNA, we used a hypergeometric test analysis. Notably, we detected 42 differentially expressed miRNAs that putatively regulate a total of 350 depleted DEGs, involved in glucose metabolism, fatty acid oxidation, mitochondrion biogenesis, and immune response pathways. Graphical Gaussian models in an independent validation set of animals confirmed that 4 miRNAs could be strong candidate regulatory molecules for endurance exercise adaptation. This study represents, to the best of our knowledge, the first integrated comprehensive overview of the miRNA-mRNA co-regulation networks that may play a central role in controlling post-transcriptomic regulations during endurance exercise in horses. Sixty-one Arabian or half-breed Arabian horses (20 females and 41 geldings) aged 10 ± 2 years (±SEM) were recruited on voluntary basis of the owner on three 160 km endurance rides.
Project description:Equine myofibrillar myopathy (MFM) causes exertional muscle pain and is characterized by myofibrillar disarray and ectopic protein aggregates of unknown origin. To investigate the pathophysiology of MFM, we compared the skeletal muscle proteome and 3 h post-exercise transcriptome of gluteal muscle in MFM and control Arabian horses using iTRAQ and RNA-sequencing analyses. Differential expression (DE) was evaluated using edgeR and pathway analysis using Cytoscape and Cluego. Proteome analysis revealed significantly lower antioxidant peroxiredoxin 6 content (PRDX6, ↓4.14 log2 fold change [FC]), sarcomere protein tropomyosin (TPM2, ↓3.24x) and higher fatty acid transport enzyme carnitine palmitoyl transferase (CPT1B, ↑3.49x) in MFM vs. control muscle at rest. Three hours after exercise, 191 genes were DE in MFM vs. control muscle with a remarkably focused > 1.5 log2FC in genes involved in sulfur compound/ cysteine metabolism such as cystathionine-beta-synthase [CBS, ↑4.51] and a cysteine and neutral amino acid membrane transporter [SLC7A10, ↑1.79]. In MFM vs. control at rest, 284 genes were DE with > 1.5 log2 FC in pathways for structure morphogenesis, fiber organization, tissue development and cell differentiation including> 2 log2 FC in alpha actin-cardiac [↑ ACTC1], cytoskeletal desmoplakin [↑ DSP], basement membrane usherin [↓ USH2A] and delta like non-canonical Notch ligand 1, [↓ DLK1]. In conclusion, myofibrillar disarray and protein aggregation in MFM horses was embodied by DE expression in pathways of structure/fiber organization and tissue regeneration. Reduced antioxidant capacity as a potential etiology for MFM was supported by diminished cysteine rich antioxidant peroxiredoxin 6 with compensatory increased cysteine synthesis following exercise.
Project description:Lifestyle intervention can improve insulin sensitivity in obese youth yet few studies have examined the biological mechanisms underlying improvements. Therefore, the purpose of this study was to explore biological pathways associated with intervention-induced improvements in insulin sensitivity. Fifteen (7M/8F) overweight/obese (BMI percentile=96.3M-BM-11.1) Latino adolescents (15.0M-BM-10.9 years) completed a 12-week lifestyle intervention that included weekly nutrition education and 180 minutes of moderate-vigorous exercise per week. Insulin sensitivity, estimated by an oral glucose tolerance test and the Matsuda Index, increased 29.2% post intervention (2.4M-BM-10.3 to 3.1M-BM-10.3, p=0.01). Global microarray analysis profiling from whole blood was performed to examine changes in gene expression and to explore biological pathways that were significantly changed in response to the intervention. A total of 1,459 probes corresponding to mRNA transcripts (717 up, 742 down) were differentially expressed with a fold changeM-bM-^IM-%1.2 and P<0.05. Among the genes identified were hexokinase 3 (HK3), ATPase, H+ transporting V0 subunit e2 (ATPV0E), and sterol regulatory element binding transcription factor 1 (SREBF1), and endothelial cell adhesion molecule (ESAM). There were 8 pathways identified that met the criteria for significance, including insulin signaling, type 1 diabetes, and glycerophospholipid metabolism. Participants that increased insulin sensitivity exhibited five times the number of significant genes altered compared to non-responders (1,144 vs. 230). These findings offer insight into the molecular mechanisms underlying health improvements among high-risk Latino youth. Lifestyle interventions may contribute to improved insulin sensitivity through pathways related to insulin signaling and immune response. Further, genetic factors may mediate response to lifestyle intervention. Fifteen (7M/8F) overweight/obese Latino Youth Whole blood RNA samples evaluated pre and post intervention.
Project description:Myofibrillar myopathy (MFM) in horses is a late onset disease that affects performance and athleticism. It is characterized by myofibrillar disarray and protein aggregation with no known cause. The objective of this study was to elucidate the molecular drivers of MFM in Warmblood (WB) horses by proteomic profiling (5 MFM WB, 4 non-MFM WB) of gluteal muscle. MFM horses used in this study had a chronic history of poor performance and exercise intolerance as well as accumulation of desmin aggregates in > 4 myofibers per muscle sample. The Equine Neuromuscular Diagnostic Laboratory database at Michigan State University was queried to identify WB horses with snap frozen gluteus medius biopsies available for analysis. Non-MFM control horses were defined as horses with no history of exercise intolerance and no evidence of desmin accumulation or other histopathology in muscle biopsies. Muscle biopsy samples were obtained at rest from horses that had not undertaken strenuous exercise in the preceding 48 hours.