Alteration in microRNA-25 Balance Causes Heart and Kidney Impairment
Ontology highlight
ABSTRACT: Contradictorily, both up- and downregulation of miR-25 can reverse heart failure. Importantly, these findings were based on the same animal model of pressure overloaded transverse aortic constriction (TAC) mice. How can we explain and, if possible, reconcile these two conflicting findings? Heart failure is a multi-step process that involves multiple organs, and we hypothesized that determining whether altering miR-25 alone could induce heart failure should provide a mechanistic basis for miR-25âs action in this process. Here, we show that overexpression of miR-25 in normal mice caused cardiomyocyte fibrosis and apoptosis but no obvious kidney impairment. By contrast, inhibition of miR-25 in normal mice led to hypertension, mild heart dilation, and severe kidney dysfunction. With the expectation that restoring miR-25 might ameliorate kidney injury, we demonstrated that increasing miR-25 reversed proteinuria and kidney fibrosis in diabetic nephropathy. MiR-25 expression in humans is initially decreased at the onset of heart failure but is later increased in end-stage heart failure. RNA sequencing of mouse kidneys with elevated and reduced miR-25 identified distinct alterations of a number of putative miR-25 target mRNAs, including those involved in the Ras signaling pathway, oxidant stress. In summary, differences in miR-25 expression during different stages of heart disease and its distinct roles in the heart and kidney, offer a new perspective for the role of miR-25 function in heart failure, which may begin to resolve this catch-22. Detect the mRNA alteration in wildtype and miR-25 agomir or antagomir treated mice
Project description:Contradictorily, both up- and downregulation of miR-25 can reverse heart failure. Importantly, these findings were based on the same animal model of pressure overloaded transverse aortic constriction (TAC) mice. How can we explain and, if possible, reconcile these two conflicting findings? Heart failure is a multi-step process that involves multiple organs, and we hypothesized that determining whether altering miR-25 alone could induce heart failure should provide a mechanistic basis for miR-25’s action in this process. Here, we show that overexpression of miR-25 in normal mice caused cardiomyocyte fibrosis and apoptosis but no obvious kidney impairment. By contrast, inhibition of miR-25 in normal mice led to hypertension, mild heart dilation, and severe kidney dysfunction. With the expectation that restoring miR-25 might ameliorate kidney injury, we demonstrated that increasing miR-25 reversed proteinuria and kidney fibrosis in diabetic nephropathy. MiR-25 expression in humans is initially decreased at the onset of heart failure but is later increased in end-stage heart failure. RNA sequencing of mouse kidneys with elevated and reduced miR-25 identified distinct alterations of a number of putative miR-25 target mRNAs, including those involved in the Ras signaling pathway, oxidant stress. In summary, differences in miR-25 expression during different stages of heart disease and its distinct roles in the heart and kidney, offer a new perspective for the role of miR-25 function in heart failure, which may begin to resolve this catch-22.
Project description:Chronic kidney disease is associated with progressive renal fibrosis, where perivascular cells give rise to the majority of α-SMA positive myofibroblasts. We sought to identify pericytic miRNAs that could serve as a target to decrease myofibroblast formation. We induced kidney fibrosis in FoxD1-GC;Z/Red-mice by unilateral ureteral obstruction (UUO) followed by FACS sorting of dsRed-positive FoxD1-derivative cells and miRNA profiling. MiR-132 selectively increased 21-fold during pericyte-to-myofibroblast formation whereas miR-132 was only 2.5-fold up in total kidney lysates (both in UUO and ischemia-reperfusion injury). MiR-132 silencing in UUO decreased collagen deposition (35%) and tubular apoptosis. Immunohistochemistry, western blot and qRT-PCR confirmed a similar decrease in interstitial α-SMA+ cells. Pathway analysis identified a rate-limiting role for miR-132 in myofibroblast proliferation that was confirmed in vitro. Indeed, antagomir-132 treated mice displayed a reduction in the number of proliferating, ki67+ interstitial myofibroblasts. Interestingly, this was selective for the interstitial compartment and did not impair the reparative proliferation of tubular epithelial cells, as evidenced by an increase in ki67+ epithelial cells, as well as increased (p-)RB1, Cyclin-A and decreased RASA1, p21 levels in kidney lysates. Taken together, silencing miR-132 counteracts the progression of renal fibrosis by selectively decreasing myofibroblast proliferation and could potentially serve as a novel antifibrotic therapy. Total RNA obtained from FACS sorted mouse FoxD1-derivative interstitial cells from healthy or fibrotic kidneys
Project description:Despite some success of pharmacotherapies targeting primarily neurohormonal dysregulation, heart failure is a growing global pandemic with increasing burden. Treatments that improve the disease by reversing heart failure at the cardiomyocyte level are lacking. MicroRNAs (miRNA) are transcriptional regulators of gene expression, acting through complex biological networks, and playing thereby essential roles in disease progression. Adverse structural remodelling of the left ventricle due to myocardial infarction (MI) is a common pathological feature leading to heart failure. We previously demonstrated increased cardiomyocyte expression of the miR-212/132 family during pathological cardiac conditions. Transgenic mice overexpressing the miR-212/132 cluster (miR-212/132-TG) develop pathological cardiac remodelling and die prematurely from progressive HF. Using both knockout and antisense strategies, we have shown miR-132 to be both necessary and sufficient to drive the pathological growth of cardiomyocytes in a murine model of left ventricular pressure overload. Based on the findings, we proposed that miR-132 may serve as a therapeutic target in heart failure therapy. Here we provide novel mechanistic insight and translational evidence for the therapeutic efficacy in small and large animal models (n=135) of heart failure. We demonstrate strong PK/PD relationship, dose-dependent efficacy and high clinical potential of a novel optimized synthetic locked nucleic acid phosphorothioate backbone antisense oligonucleotide inhibitor of miR-132 (antimiR-132) as a next-generation heart failure therapeutic.
Project description:End-stage heart failure has long been regarded as a terminal state of cardiac pathological remodeling that is almost impossible to be reversed by any available therapies.We discovered that short term estrogen (E2) treatment rescues preexisting severe heart failure (HF) induced by trans-aortic constriction (TAC) in mice by restoring ejection fraction (EF) from 30% to 55% and cardiac fibrosis (Iorga A, Li J, Sharma S, Umar S, Bopassa JC, Nadadur RD, et al. Rescue of Pressure Overload‐Induced Heart Failure by Estrogen Therapy. Journal of the American Heart Association [Internet]). Given the role of microRNAs in wide spectrum of physiological and pathological processes in HF and fibrosis, we explored whether E2 rescues HF and fibrosis by controlling the expression of specific microRNAs (miRs). RNA isolated from cardiac left ventricle of mice in sham (n=4), HF (n=5) and E2-rescued (n=5) groups was sent to Ocean Ridge Biosciences for miR microarray analysis. Comparison of E2-Rescued group versus HF and sham groups revealed a subset of 158 miRs significantly regulated by E2.
Project description:We aimed to identify miRNA biomarkers of renal injury in kidney biopsies from patients with lupus nephritis. MiRNA profiles of 8 patients were analyzed for correlation with various clinical features including Progression, Activity, Chronicity, and Time to Kidney Failure. MicroRNAs (miRs) are promising biomarkers and are involved in pathogenesis of kidney diseases. We aimed to identify miR biomarkers of renal injury in kidney biopsies from patients with lupus nephritis and study their potential role in renal fibrosis. miR-150 was significantly increased in kidneys with high chronicity compared to low chronicity and it correlated positively with chronicity index scores and renal collagen I expression. In kidneys with high chronicity, miR-150 was found predominantly in proximal tubular cells (PTCs) and was moderately expressed in podocytes and to lesser degree in mesangial cells (MCs). We hypothesized that miR-150 increases fibrosis by downregulating a negative regulator of profibrotic proteins. Suppressor of cytokine signaling1 (SOCS1) is a predicted target of miR-150 and has shown antifibrotic role. After confirming that SOCS1 is a direct target of miR-150, we showed that transfection of a miR-150 analog downregulated SOCS1 protein and upregulated the profibrotic proteins fibronectin, collagen I, collagen III, and TGF-β1 in both primary normal human renal PTCs and MCs. A similar effect was seen when using a SOCS1 siRNA to confirm that the effect of miR-150 on profibrotic proteins is mediated through SOCS1. Stimulation with TGF-β1 induced miR-150 increase in PTCs and human podocytes but not MCs. These results suggest that miR-150 might be a useful quantitative renal biomarker of kidney injury in lupus nephritis and that miR-150, which might be partially induced by TGF-β1, plays an important role in renal fibrosis by increasing profibrotic molecules through downregulation of SOCS1. FFPE kidney specimens (n=25) including baseline and repeated needle renal biopsies were from 14 patients with LN enrolled in IRB-approved protocols at the NIDDK between 1976 and 1999. The specimens were divided in two groups based on histological chronicity index (CI). CI ≥ 4 were categorized as having high degree of chronicity of chronic kidney injury. 18 kidneys from 8 patients including high CI (n=9) and low CI (n=9) were used for miR profiling by Affymetrix microRNA microarrays.
Project description:To identify a novel target for the treatment of heart failure, we examined gene expression in the failing heart. Among the genes analyzed, 12/15 lipoxygenase (12/15-LOX) was markedly up-regulated in heart failure. To determine whether increased expression of 12/15-LOX causes heart failure, we established transgenic mice that overexpressed 12/15-LOX in cardiomyocytes. Echocardiography showed that 12/15-LOX transgenic mice developed systolic dysfunction. Cardiac fibrosis increased in 12/15-LOX transgenic mice with advancing age, and was associated with the infiltration of macrophages. Consistent with these observations, cardiac expression of monocyte chemoattractant protein-1 (Mcp-1) was up-regulated in 12/15-LOX transgenic mice compared with wild-type mice. Treatment with 12-hydroxy-eicosatetraenotic acid, a major metabolite of 12/15-LOX, increased MCP-1 expression in cardiac fibroblasts and endothelial cells, but not in cardiomyocytes. Inhibition of Mcp-1 reduced the infiltration of macrophages into the myocardium and prevented both systolic dysfunction and cardiac fibrosis in 12/15-LOX transgenic mice. Likewise, disruption of 12/15-LOX significantly reduced cardiac Mcp-1 expression and macrophage infiltration, thereby improving systolic dysfunction induced by chronic pressure overload. Our results suggest that cardiac 12/15-LOX is involved in the development of heart failure and that inhibition of 12/15-LOX could be a novel treatment for this condition. Heart failure is still one of the leading causes of death worldwide. Therefore, it is important to elucidate the underlying mechanisms of heart failure and develop more effective treatments for this condition. To clarify the molecular mechanisms of heart failure, we performed microarray analysis using cardiac tissue samples obtained from a hypertensive heart failure model (Dahl salt-sensitive rats). ~300 genes showed significant changes of expression in the failing hearts compared with control hearts. Among the genes analyzed, 12/15-lipoxygenase (12/15-LOX) was most markedly up-regulated in failing hearts compared with control hearts .
Project description:An important event in the pathogenesis of heart failure is the development of pathological cardiac hypertrophy. In cultured cardiac cardiomyocytes, the transcription factor Gata4 is required for agonist-induced cardiomyocyte hypertrophy. We hypothesized that in the intact organism Gata4 is an important regulator of postnatal heart function and of the hypertrophic response of the heart to pathological stress. To test this hypothesis, we studied mice heterozygous for deletion of the second exon of Gata4 (G4D). At baseline, G4D mice had mild systolic and diastolic dysfunction associated with reduced heart weight and decreased cardiomyocyte number. After transverse aortic constriction (TAC), G4D mice developed overt heart failure and eccentric cardiac hypertrophy, associated with significantly increased fibrosis and cardiomyocyte apoptosis. Inhibition of apoptosis by overexpression of the insulin-like growth factor 1 receptor prevented TAC-induced heart failure in G4D mice. Unlike WT-TAC controls, G4D-TAC cardiomyocytes hypertrophied by increasing in length more than width. Gene expression profiling revealed upregulation of genes associated with apoptosis and fibrosis, including members of the TGF? pathway. Our data demonstrate that Gata4 is essential for cardiac function in the postnatal heart. After pressure overload, Gata4 regulates the pattern of cardiomyocyte hypertrophy and protects the heart from load-induced failure. Experiment Overall Design: We reasoned that if Gata4 was a crucial regulator of pathways necessary for cardiac hypertrophy, then modest reductions of Gata4 activity should result in an observable cardiac phenotype. To test this hypothesis, we used gene targeted mice that express reduced levels of Gata4. We characterized these mice at baseline and after pressure Experiment Overall Design: overload.
Project description:Fibrosis is defined as an abnormal matrix remodeling and loss of tissue homeostasis due to excessive synthesis and accumulation of extracellular matrix proteins in tissues. At present, there is no effective therapy for organ fibrosis. Previous studies demonstrated that aged plasminogen activator inhibitor-1(PAI-1) knockout mice develop spontaneously cardiac-selective fibrosis without affecting any other organs including kidney. Therefore, the PAI-1 knockout model of cardiac fibrosis provides an excellent opportunity to find the igniter(s) of cardiac fibrosis and its status in unaffected organs. We hypothesized that differential expressions of profibrotic and antifibrotic genes in PAI-1 knockout hearts and unaffected organs lead to cardiac selective fibrosis. In order to address this prediction, we have used a genome-wide gene expression profiling of transcripts derived from aged PAI-1 knockout hearts and kidneys. The variations of global gene expression profiling were compared within four groups: wildtype heart vs. knockout heart; wildtype kidney vs. knockout kidney; knockout heart vs. knockout kidney and wildtype heart vs. wildtype kidney. Analysis of illumina-based microarray data revealed that several genes involved in different biological processes such as immune system processing, response to stress, cytokine signaling, cell proliferation, adhesion, migration, matrix organization and transcriptional regulation were affected in hearts and kidneys by the absence of PAI-1, a potent inhibitor of urokinase- and tissue-type plasminogen activator. Importantly, the expressions of a number of genes, involved in profibrotic pathways were upregulated or downregulated in PAI-1 knockout hearts compared to wildtype hearts and PAI-1 knockout kidneys. To our knowledge, this is the first comprehensive report on the influence of PAI-1 on global gene expression profiling in the heart and kidney and its implication in several biological processes including fibrogenesis. Total RNA was extracted from hearts and kidneys derived from three PAI-1 knockout (12- month old) and three wild-type mice (12-month old) using RNeasy Fibrous Tissue Mini Kit (Qiagen, Valencia, CA) following the manufacturer’s instructions. The quality of RNA (RNA Integrity, RIN) in all 12 samples (3 wildtype hearts; 3 PAI-1 KO hearts; 3 wildtype kidneys; and 3 PAI-1 KO kidneys) was checked using the bioanalyzer. We have used a genome-wide gene expression profiling of transcripts derived from aged PAI-1 knockout hearts and kidneys. The variations of global gene expression profiling were compared within four groups: wildtype heart vs. knockout heart; wildtype kidney vs. knockout kidney; knockout heart vs. knockout kidney and wildtype heart vs. wildtype kidney.
Project description:The early events that signal renal dysfunction in presymptomatic heart failure are unclear. To evaluate this, we performed RNA-seq on kidneys from transgenic mice with cardiac-specific overexpression of mutant alpha-B-crystallin, which develop slowly progressive cardiomyopathy. Presymptomatic transgenic mice display an increase in serum creatinine and in urinary neutrophil gelatinase-associated lipocalin (NGAL), but lack chronic interstitial fibrosis. Presymptomatic transgenic mouse kidneys exhibited a worsened response to ischemia-reperfusion injury based on serum creatinine, urine NGAL, tubule dilation and cast score, and apoptosis. Our findings demonstrate functional renal impairment, urinary biomarker elevations, and gene expression changes that occur in early presymptomatic heart failure, which dramatically increase the susceptibility to subsequent acute kidney injury.