Identification of miRNAs from Glehnia littoralis by high-throughput sequencing and their response to salt stress
Ontology highlight
ABSTRACT: Glehnia littoralis is a perennial herb growing on the sandy beaches. In this study, high-throughput sequencing of small RNA was performed to identify miRNAs and their response to salt stress in G. littoralis. As a result, 37 conserved miRNAs belonging to 13 families and 37 novel miRNAs were identified. Among the 74 miRNAs, the expression levels of miR-156b*, miR-171, miR-171*, and miR-319 were downregulated and that of miR-399a, miR-399a*, miR-399b, miR-399b*, novel-9 and novel-14* were upregulated under salt stress. Target prediction of salt-responsive miRNAs indicated that these miRNAs exerted a role by regulating specific stress-responsive genes, such as SPLs. However, a lot of target genes of salt-responsive miRNAs were uncharacterized, which implied that there might be some new miRNA-mediated reguatory of salt response in G. littoralis. Small RNA profiles of G. littoralis under control (CK), salt stress (SS) and (RS)
Project description:Glehnia littoralis is a perennial herb growing on the sandy beaches. In this study, high-throughput sequencing of small RNA was performed to identify miRNAs and their response to salt stress in G. littoralis. As a result, 37 conserved miRNAs belonging to 13 families and 37 novel miRNAs were identified. Among the 74 miRNAs, the expression levels of miR-156b*, miR-171, miR-171*, and miR-319 were downregulated and that of miR-399a, miR-399a*, miR-399b, miR-399b*, novel-9 and novel-14* were upregulated under salt stress. Target prediction of salt-responsive miRNAs indicated that these miRNAs exerted a role by regulating specific stress-responsive genes, such as SPLs. However, a lot of target genes of salt-responsive miRNAs were uncharacterized, which implied that there might be some new miRNA-mediated reguatory of salt response in G. littoralis.
Project description:There is currently little information on which trancription factors control the expression of defence genes in response to herbivory in Arabidopsis thaliana. We performed a whole-genome analysis of Arabidopsis plants after feeding by Spodoptera littoralis larvae. Wild-type and knockout mutants in different insect-inducible transcription factors were either untreated (control plants) or challenged for 8 days with S. littoralis larvae (insect challenged plants).
Project description:Purpose: To identify Fusarium wilt and salt-responsive miRNAs at genome wide level in Chickpea. Results: A total of 12,135,571 unique reads were obtained. In addition to 122 conserved miRNAs belonging to 25 different families, 59 novel miRNAs along with their star sequences were identified. Four legume specific miRNAs, miR5213, miR5232, miR2111 and miR2118 were found in all the libraries. The Poly (A) tailing assay based qRT-PCR was used to validate eleven conserved and five novel miRNAs. miR530 was highly up regulated in response to fungal infection and targets zinc knuckle and microtubule-associated proteins. Many miRNAs responded in a similar fashion under both biotic and abiotic stresses indicating a cross talk between the pathways involved in regulating these stresses. The potential target genes for the conserved and novel miRNAs were predicted based on sequence homology. miR166 targets a HD-ZIPIII transcription factor and was validated by 5’ RLM-RACE. Conclusions: The present study has led to identification of several conserved and novel miRNAs in chickpea associated with gene regulation in reference to wilt and salt stress conditions. This study will help in better understanding of how chickpea functions in response to stresses. Total three small RNA libraries from chickpea were prepared and sequenced independently [Control (C), Wilt stress (WS), Salt stress (SS)] on Illumina GAIIx.
Project description:Salt responsive genes were identified in chinese willow (Salix matsudana) after the plants were treated with 100 mM NaCl. for 48 hours We used microarrays to identify genes responsible for combating salt stress. Those up-regulated during the NaCl treatment may protect the plants from damages caused by salt stress. 2 month-old S. matsudana plants which were treated with 100 mM NaCl and control plants were used for RNA extraction and hybridization on Affymetrix microarrays. We sought to obtain salt responsive genes that protect the plants from stress injury.Those differentially expressed genes identified by the microarray would help to understand the mechanism of S. matsudana reacting to salt stress.
Project description:Salt stress is one of the major abiotic stresses affecting the yield of ginseng (Panax ginseng C. A. Meyer). The objective of this study was to identify proteins of ginseng, which is responsive in salt stress. In this direction, ginseng plants of different growth stages (3, 4 and 5 years), were grown in the hydroponic conditions and exposed to 5 ds/m salt concentration. The secreted proteins, collected from the water, at 0, 24, 72 and 120 hours after exposure were used for the proteome analysis using shotgun approaches. Through the shotgun proteomics, a total of 155 and 88 secreted proteins were identified by searching in two RNA-sequencing (RNA-seq) database, respectively.
Project description:Salt stress is a primary cause of crop losses worldwide, and it has been the subject of intense investigation to unravel the complex mechanisms responsible for salinity tolerance. MicroRNA is implicated in many developmental processes and in responses to various abiotic stresses, playing pivotal roles in plant adaptation. Deep sequencing technology was chosen to determine the small RNA transcriptome of Saccharum sp cultivars grown on saline conditions. We constructed four small RNAs libraries prepared from plants grown on hydroponic culture submitted to 170mM NaCl and harvested after 1h, 6hs and 24hs. Each library was sequenced individually and together generated more than 50 million short reads. Ninety-eight conserved miRNAs and 33 miRNAs* were identified by bioinformatics. Several of the microRNA showed considerable differences of expression in the four libraries. To confirm the results of the bioinformatics-based analysis, we studied the expression of the 10 most abundant miRNAs and 1 miRNA* in plants treated with 170mM and with a severe treatment of 340mM NaCl. The results showed that 11 selected miRNAs had higher expression in samples treated with severe salt treatment compared to the mild one. We also investigated the regulation of the same miRNAs in shoots of four cultivars grown on soil treated with 170mM NaCl. Cultivars could be grouped according to miRNAs expression in response to salt stress. Furthermore, the majority of the predicted target genes had an inverse regulation with their correspondent microRNAs. The targets encode a wide range of proteins, including transcription factors, metabolic enzymes and genes involved in hormone signaling pathways of, probably assisting the plants to develop tolerance. Our work provides insights into the regulatory functions of miRNAs, thereby expanding our knowledge on potential salt-stressed regulated genes. Screenning of sRNA transcriptome of sugarcane plants infected with Acidovorax avenae subsp avenae after seven days
Project description:this study discovered unique glycoprotein resources responsible for plant salt stress tolerance and suggested crucial roles of Nthis study discovered unique glycoprotein resources responsible for plant salt stress tolerance and suggested crucial roles of N-glycans in regulating salt responsive protein expression in Arabidopsis.-glycans in regulating salt responsive protein expression in Arabidopsis.
Project description:Transcriptional variation, also called expression level polymorphism (ELP), contributes to intra-specific phenotypic variation in many organisms. Differentially expressed transcripts are typically enriched for stress-related genes, suggesting that differences in response to the environment are a particularly common point of divergence among gentoypes. Analysis of ELPs also has been suggested as a way to assess unintended consequences of transgene introduction; however, it is important that interpretation of transcriptional changes be performed within the context of potential fitness effects. In these studies we sought to examine differential gene expression in response to salinity for two widely used Arabidopsis thaliana ecotypes, Wassilewskija (Ws) and Columbia (Col), and a single gene mutation (glabrous, gl1-1) in the Col background (Col(gl)), in relation to genetic, phenotypic, and fitness differences. Growth analyses were performed with seedlings germinated on culture media and growth chamber-grown plants carried through the full life cycle. Transcriptome analyses were performed with salt treated and control growth-chamber grown plants six days post initiation of salt stress. Ws plants had the least salt injury and highest dry matter accumulation and seed production in salt stressed conditions. ELPs among genoytypes and in response to 100 mM NaCl were enriched for genes associated with response to stress, including stress-associated transcription factors, heat shock and redox metabolism genes, and R genes. Application of salt resulted in many more transcripts up- or down-regulated in Col and Ws than in Col(gl). Many of the transcripts influenced by salt in Col were already altered in gl1-1 plants in the absence of salt, although Col(gl) plants did not show any detectable signs of stress, or effects on fecundity in the absence of salt treatment. The majority of salt-induced transcriptional changes that occurred in Ws also occurred in Col, suggesting common salt stress responses in these two ecotypes. Many more genes were affected by salt in Col than Ws, however, possibly reflecting the greater salt injury observed for Col. There was minimal overlap between the transcripts that differed for Ws and Col prior to salt treatment and those that were subsequently affected by salt stress. Thus, many genes conferring comparative salt stress tolerance in Ws likely differ from those whose expression levels are modified in response to salt stress. These studies demonstrate transcriptional variation among Arabidopsis genotypes in response to salt stress. Greater transcriptome differences did not necessarily correspond with greater genetic difference or phenotypic differences in morphology, fecundity, and resistance to salt stress. These results suggest that depending on circumstance, transcriptional changes can reflect response to injury, facilitate adaptive expression of fitness-associated traits, or allow for phenotypic buffering to minimize the impact of genetic changes. Three Arabidopsis genotypes were grown in the growth chamber in the absence and presence of salt stress. Plants from 20 days after sowing (6 days after salt treatment) were used for RNA extraction and hybridization on Affymetrix microarrays. There were two biological replicates for each genotype and salt treatment combination.
Project description:The global emergence of soil salinization poses a serious challenge to many countries and regions. γ-Aminobutyric acid (GABA) is involved in systemic regulation of plant adaptation to salt stress, but the underling molecular and metabolic mechanism still remains largely unknown. The elevated endogenous GABA level by exogenous application of GABA could significantly improve salt tolerance in creeping bentgrass with the enhancement of antioxidant capacity, photosynthetic characteristics, osmotic adjustment (OA), and water use efficiency. GABA strongly upregulated transcript levels of AsPPa2, AsATPaB2, AsNHX2/4/6, and AsSOS1/20 in roots involved in enhanced capacity of Na+ compartmentalization and mitigation of Na+ toxicity in cytosol. Significant downregulation of AsHKT1/4 expression could be induced by GABA in leaves in relation to maintenance of significantly lower Na+ accumulation and higher K+/Na+ ratio. GABA-depressed aquaporins (AQPs) expression and accumulation induced declines in stomatal conductance and transpiration, thereby reducing water loss in leaves during salt stress. For metabolic regulation, GABA primarily enhanced sugars and amino acids accumulation and metabolism largely contributing to improved salt tolerance through maintaining OA and metabolic homeostasis. Other major pathways could be responsible for GABA-induced salt tolerance including increases in antioxidant defense, heat shock proteins, dehydrins, and myo-inositol accumulation in leaves. Integrative analyses of molecular, protein, metabolic, and physiological changes reveal systemic function of GABA on regulating ions, water, and metabolic homeostasis in non-halophytic creeping bentgrass under salt stress.