MiRNA anlysis of extracellular vesicles (EV) secreted by embryonic stem cell-derived cardiovascular progenitor cells (hES-CPg) which recapitulate the therapeutic effects of these cells in a model of chronic heart failure (CHF).
Ontology highlight
ABSTRACT: Background: We have found that extracellular vesicles (EV) secreted by embryonic stem cell-derived cardiovascular progenitor cells (hES-CPg) recapitulate the therapeutic effects of these cells in a model of chronic heart failure (CHF). Objectives: Our goal was to test other cellular sources of EV and to explore their mechanism of action.
Project description:Background: We have found that extracellular vesicles (EV) secreted by embryonic stem cell-derived cardiovascular progenitor cells (hES-CPg) recapitulate the therapeutic effects of these cells in a model of chronic heart failure (CHF). Objectives: Our goal was to test other cellular sources of EV and to explore their mechanism of action.
Project description:The expression profile in miR-155-/- FLT3-ITD+ AML is unknown. Using empty vector (EV) or two distinct miR-155 (S3 or S10) lentiviral CRISPR-Cas9 infected FLT3-ITD+ AML cell lines (MV4-11 cells), we performed next generation RNA sequencing to determine the expression profile in these cells dependent on miR-155. We found a number of pathways dysregulated, including STAT5 activation. RNAseq was performed on EV or miR-155 lentiviral CRISPR-Cas9 infected MV4-11 cell lines in triplicate cultures.
Project description:With the near eradication of poliovirus due to global vaccination campaigns, attention has shifted to other enteroviruses that can cause polio-like paralysis syndrome (now termed acute flaccid myelitis (AFM)). In particular, enterovirus D68 (EV-D68) is believed to be the main driver of epidemic outbreaks of AFM in recent years, yet not much is known about EV-D68 host interactions. EV-D68 is a respiratory virus but, in rare cases, can spread to the central nervous system to cause severe neuropathogenesis. We use genome-scale CRISPR screens to identify genes important for EV-D68 infection. A549 and U87-MG cells were stably transduced with lentiCas9-Blast (Addgene, #52962) and subsequently selected using Blasticidin. Then, 300 million cells that constitutively express Cas9 were transduced with lentiGuide-Puro from the Brunello library (MOI 0.3). Cells were then selected with puromycin, expanded to 3 billion cells, and then pooled together and cryofrozen in aliquots. One hundred million cells were thawed constituting over 1000× genome coverage worth of mutagenized library,expanded, and seeded for the screens. Each screen had over 500x genome coverage. The cells were infected with EV-D68 IL (BEI USA/2014/18952) (MOI 0.1). Virus-resistant colonies were harvested. The uninfected reference used was the unselected starting population. The unselected and selected cells were both processed with QIAamp DNA columns to purify the gDNA. A first round of PCR was used to amplify the guide RNA sequences encoded in the gDNA, followed by a second round of PCR to add the barcodes/adapters for amplicon sequencing. 2% agarose gels and a QIAquick gel extraction kit were used to purify the amplicons. The amplicons were then subjected to next-generation sequencing on a HiSeq instrument lane (Illumina) via Novogene.
Project description:Introduction: Cell-derived extracellular vesicles ([EVs], i.e., exosomes and microparticles) have been reported to mediate the cardioprotective effects of stem cells. However, a head-to-head comparison of their effects with those of the cells from which they derive has not been reported. Hypothesis: The effects of the EV content of human embryonic stem cell (hESC)-derived cardiac progenitors may be equivalent to those of the parent cells. Methods: Two series of immunodeficient (nude) mice underwent permanent coronary artery ligation. Three weeks later, those with an echocardiographically-determined LV ejection fraction ⤠50% were randomly allocated to receive transcutaneous echo-guided peri-infarct injections of alpha-MEM media (controls), hESC-derived SSEA-1+ cardiac progenitors (500000 cells in 30 μL), or total EV secreted by those 500000 cells in 48 hours in an equivalent volume. The second series also included sham-operated animals for which the needle was inserted into the myocardium in three places without injection. EVs were collected from the cell-secreted medium by ultracentrifugation and characterized by flow cytometry, and nanosight NTS. Outcomes were assessed after 6 weeks by echocardiography, taking LV end-systolic volume (ESV) as the primary end point. Hearts were processed for the assessment of fibrosis and angiogenesis. Total RNA was extracted from carefully selected animals for gene expression analysis by Affymetrix chip. Only animals with similar VTS at baseline were used for this analysis. All data were collected and analyzed blindly. Results: Cardiac progenitors were successfully generated by exposure of the pluripotent ESC to bone morphogenetic protein-2, purified by anti-CD15 immunomagnetic sorting and then cultured on vitronectin for 48 hours, after which cells or EVs derived from the same cell batch were injected. After 6 weeks in the first series, LVESV [m±SEM] in controls did not significantly differ from the pre-injection value (difference: -2.64 ± 1.54 µL, p=0.12, n= 12). Conversely, in the cell-treated group, LVESV significantly decreased by -4.20 ± 0.96 µL (p=0.0007, n=16). A similar decrease was seen in the EV-treated group: -5.73 ± 1.21 µL (p=0.0003, n=15). Similar patterns were seen for LV end-diastolic volumes: controls (-2.46 ± 1.19 µL, p=NS), cells (-4.48 ± 1.47 µL, p=0.009), EV (-4.29 ± 1.31 µL, p=0.005). For the second series, the VTD of cell- and EV-treated animals remained stable (cell: -1.85 ± 3.27 µL, p=NS, n= 4; EV: +0.05 ± 1.53 µL, p=NS, n = 4), whereas sham- and control-treated animals deteriorated significantly (sham: +2.20 ± 0.35 µL, p = 0.003, n = 5; control: +3.27 ± 0.87 µL, p = 0.03, n = 4). The trend held for VTS, though differences were not significant. Analysis of gene expression data revealed interesting pathways that were more highly expressed in cell- and EV-treated animals than in controls and sham-operated animals. Conclusions: These data support the hypothesis that EVs may be critical mediators of the paracrine effects of cell therapy, and for the sake of streamlining translational processes, deserve to be considered as potential alternatives to stem cell transplantation. Gene expression levels were compared between mouse hearts.
Project description:Cardiac fibrosis is a common feature of ischemic heart disease and cardiac fibroblasts (CF) are key players in cardiac remodeling of the injured heart after myocardial infarction (MI). Fibrosis increases myocardial stiffness, thereby impairing cardiac function, which ultimately progresses to end-stage heart failure. Little is known, however, on the secretome of CF and cell-to-cell communication of CF is only incompletely understood. Here, we in vivo labeled secreted proteins by expressing TurboID under control of the POSTN promotor in cardiac fibroblasts of mouse with myocardial infarction, enriched biotinylated proteins and analyzed them using LC-MS.
Project description:The miRNAs high-throughput sequencing for extracellular vesicles derived from A549 cell lines treated with and without intermittent hypoxia (EV-NA and EV-IH) were carried out. Three samples were processed for each group. The total RNA or purified sRNA fragment of the sample was extracted, and the 3 'and 5' connectors were successively connected to reverse transcription into cDNA, and then PCR amplification was performed. Then the target fragment library was recovered by glue cutting, and the qualified library was sequenced. Clean reads obtained by sequencing were compared with all mature miRNA sequences in miRDeep2 and miRBase. v22 database to obtain the structure, length and other information of miRNA and calculate its expression level.
Project description:Angiotensin-(1-7) (Ang-(1-7)) is an endogenous heptapeptide from the renin-angiotensin system. The cardioprotective role of Ang-(1-7) has been described due to its anti-inflammatory and anti-fibrotic activities. In this context, we investigated the impact of the oral formulation of Ang-(1-7) vehiculized in hydroxypropyl β-cyclodextrin (HPβCD) on cardiac proteome remodeling after experimental myocardial infarction. For this, Wistar male rats were submitted to short- (7 days) or long-term (60 days) oral treatment with HPβCD/Ang-(1-7) after induction of experimental myocardial infarction (MI)
Project description:Secretome containing extracellular vesicles (EV) seem to mediate the benefits of cell therapy for ischemic heart failure. Our project has the objective of comparing the secretome containing extracellular vesicles (EV) from cardiac progenitor cells (EV-CPC) vs the secretome containing EV from Fibroblasts (EV-FB) in order to stablish a protein cartography of EV-CPC and the biological pathways that they are involved. seem to mediate the benefits of cell therapy for ischemic heart failure. Our project has the objective of comparing the secretome containing extracellular vesicles (EV) from cardiac progenitor cells (EV-CPC) vs the secretome containing EV from Fibroblasts (EV-FB) in order to stablish a protein cartography of EV-CPC and the biological pathways that they are involved.
Project description:Extracellular vesicles (EV) has been shown to deliver potential microRNA (miRNA) as cargo for specific target cells; effectively, the EV unique nature of the bilayer allows miRNA to be protected from degradation. We used microarray analysis to compare the miRNA profiles of EV isolated from acute antibody-mediated allograft rejection patients (AAMR) and chronic antibody-mediated allograft rejection (CAMR) compared to Tx Controls patients. By microarray miRNA profiling we detected 42 miRNAs downregulated and 34 miRNAs upregulated with FDR < 0.05 and Fold change >2. Principal Component analysis showed that these 76 miRNAs were able to distinguish AMR-derived EV from healthy TX patients. We also investigated whether differences in EV miRNA content could separate AAMR and CAMR patients. We found 9 miRNAs differentially expressed in the two AMR groups (eight downregulated and only one upregulated in AAMR compared to CAMR; effectively, these miRNAs could distinguish AAMR-derived EV from CAMR-derived EV. We then investigated the possible target genes of these miRNAs according to their expression, fold change and the p value; interestingly, several targets were associated to CDKN1A and CDKN2A genes regulation.
Project description:After mapping to transcriptome using bowtie2 and peak calling by RNA peak caller (cfPeak), count matrix was created by merge 3 pairs of samples. EV-sorting small RNA sites in normal human plasma total RNA-seq were annotated by comparing differentially expressed peaks (EV vs. EV-depleted Plasma).