ABSTRACT: Responses of human adult articular chondrocytes under conditions of lack or excess of bone morphogenetic protein-7 also called osteogenic protein 1. Original processed data file is in E-MTAB-571.additional.zip archive.
Project description:We present an ex vivo human osteochondral model of PTOA to investigate disease effects on catabolism and cellular homeostasis in a multi-tissue system and discover biomarkers for disease progression and drug efficacy.
Project description:The objective was to study the combined effects of rapamycin and primary human Adipose-derived Mesenchymal Stromal Cells (AD-MSC) on primary human OA chondrocytes (versus their effects separetely), in an in-vitro model that reproduce an intra-articular injection. For this purpose, P1 OA chondrocytes were seeded in 6-well plates (5x10^5 cells/well) in their proliferative medium for 24h. In parallel, P1 AD-MSC were seeded in 0.4 µm inserts (7.2x10^4) in their proliferative medium for 24h. The next days, all media were removed, cells were washed twice with PBS and media were replaced by miminal chondrogenic medium. Finally, OA chondrocytes were cocultured with AD-MSC (versus alone) in presence of 10nM rapamycin or DMSO (at 1:10000 dilution) as vehicle control for 3 days. At the end, media and inserts were removed and RNA of OA chondrocytes were extracted using RNeasy kit from QIAGEN with an on-column DNase I digestion as manufacturer's instructions. Because of poor quality RNA, one sample (25_DMSO_AD10) and his control (25_RA10_AD10) have been excluded from this analysis. Otherwise, all RNA integrity numbers were above 9 before libraries construction.
Project description:Autologous chondrocyte transplantation (ACT) is a routine technique to regenerate focal cartilage lesions. However, patients with osteoarthritis (OA) are lacking an appropriate long-lasting treatment alternative, partly since it is not known if chondrocytes from OA patients have the same chondrogenic differentiation potential as chondrocytes from donors not affected by OA. Articular chondrocytes from patients with OA undergoing total knee replacement (Mankin Score >3, Ahlbäck Score >2) and from patients undergoing ACT, here referred to as normal donors (ND), were isolated applying protocols used for ACT. Their chondrogenic differentiation potential was evaluated both in high-density pellet and scaffold (Hyaff-11) cultures by histological proteoglycan assessment (Bern Score) and immunohistochemistry for collagen types I and II. Chondrocytes cultured in monolayer and scaffolds were subjected to gene expression profiling using genome-wide oligonucleotide microarrays. Expression data were verified by using quantitative RT-PCR. Chondrocytes from ND and OA donors demonstrated accumulation of comparable amounts of cartilage matrix components, including sulphated proteoglycans and collagen types I and II. The mRNA expression of cartilage markers (COL2A1, COMP, aggrecan, CRTL1, SOX9) and genes involved in matrix synthesis (biglycan, COL9A2, COL11A1, TIMP4, CILP2) was highly induced in 3D cultures of chondrocytes from both donor groups. Genes associated with hypertrophic or OA cartilage (COL10A1, RUNX2, periostin, ALP, PTHR1, MMP13, COL1A1, COL3A1) were not significantly regulated between the two groups of donors. The expression of 661 genes, including COMP, FN1, and SOX9, were differentially regulated between OA and ND chondrocytes cultured in monolayer. During scaffold culture, the differences diminished between the OA and ND chondrocytes, and only 184 genes were differentially regulated. Only few genes were differentially expressed between OA and ND chondrocytes in Hyaff-11 culture. The risk of differentiation into hypertrophic cartilage does not seem to be increased for OA chondrocytes. Our findings suggest that the chondrogenic capacity is not significantly affected by OA and OA chondrocytes fulfill the requirements for matrix-associated ACT. Experiment Overall Design: Gene expression profiles of monolayer cultures (ML; passage 2) and Hyaff-11 scaffold cultures (3D; 14 days in vitro) of chondrocytes from 3 normal donors (ND; underwent ACT treatment) and 3 donors suffering from Osteoarthritis (OA; underwent knee replacement surgery) were determined. Comparative analyses between 3D and ML cultures (3D vs. ML) were performed to assess differentiation capacity of ND and OA chondrocytes. Furthermore, OA-related differences were determined comparing OA and ND monolayers as well as scaffold cultures (each OA vs. ND).
Project description:Osteoarthritis is a degenerative joint disease that ranks among the leading causes of pain, adult disability, shortening of working life, and socioeconomic costs worldwide. The mechanisms underlying osteoarthritis pathogenesis are yet to be fully elucidated, thus limiting current disease management and treatment. Galectin-1 is an endogenous carbohydrate-binding protein central to adhesion via glycan-bridging, glycoconjugate-mediated signaling, cell proliferation, differentiation, apoptosis, cancers, and host-pathogen interactions. The chondrocyte glycophenotype, which can act as a system of counter-receptors for galectin binding, is compromised in osteoarthritis. We here investigated Galectin-1 and associated gene network's role in human osteoarthritis pathogenesis. Immunohistochemical analysis showed that Galectin-1 associates with osteoarthritic cartilage and subchondral bone histopathology and severity (p<0.0001, n=29 patients). Glycan-dependent Galectin-1 binding to osteoarthritic chondrocytes' cell surface led to marked upregulation of matrix metalloproteinases and activation of NF-κB. Biochemical, molecular and genome-wide analyses showed that Galectin-1 strongly activates a large inflammatory gene network (p<10-16). Bioinformatic analyses of gene promoters up-regulated by Galectin-1 unveiled an overwhelming NF-κB signaling signature. Inhibition of any of several components of the NF-κB pathway using dedicated inhibitors led to dose-dependent impairment of Galectin-1-mediated transcriptional activation. This study identifies for the first time Galectin-1 as an activator of clinically relevant inflammatory-response genes co-regulated by NF-κB. Since inflammation is critical to cartilage degeneration in osteoarthritis, this report is also first to put glycobiology at the center-stage of osteoarthritic cartilage degeneration. Finally, this is the first report to uncover a Galectin-1 gene signature and associated gene network in any biological setting or species. For microarray experiments, osteoarthritic chondrocytes were isolated from five male patients (47-78 years). Following starvation, cells were incubated in the presence of 50 µg/ml recombinant Galectin-1 for 24 h. For each donor population, untreated cells were included as control. In total, 10 samples were analyzed.
Project description:Polycomb repressive complex 2 (PRC2) controls maintenance and lineage determination of stem cells by suppressing genes that regulate cellular differentiation and tissue development. However, the role of PRC2 in lineage-committed somatic cells is largely unknown. In this study, we ablated Eed, an essential component of PRC2, in growth plate chondrocytes to study the role of PRC2 in skeletal development. In this study, we profiled genes assocaited with H3K27me3 histone 3 modification in primary rib chondrocytes. Mouse primary chodnrocytes were subjected to ChIP analysis using H3K27me3 antibody. ChIP'ed DNA and Input DNA were sequenced by Otogenetics (Necros, GA)
Project description:We have studied the expression profile of 3D cultured human chondrocytes that were stimulated with supernatant of synovial fibroblasts derived from a RA patient (RASF=HSE cell line) and from a normal donor (NDSF=K4IM cell line), respectively. For this purpose, passage 2 human chondrocytes were cultured for 14 days in alginate beads and subsequently stimulated for 48 hours with supernatant of RASF and NDSF. Baseline expression was determined of unstimulated chondrocytes. Differential genome-wide microarray analysis of RASF and NDSF stimulated chondrocytes disclosed a distinct expression profile related to cartilage destruction involving marker genes of inflammation (COX-2), NF-kappa B signaling pathway (TLR2), cytokines/chemokines and receptors (CXCL1-3, CCL20, CXCL8, CXCR4, IL-6, IL-1beta), matrix degradation (MMP-10, MMP-12) and suppressed matrix synthesis (COMP). Thus, transcriptome profiling of RASF and NDSF stimulated chondrocytes revealed a disturbed catabolic-anabolic homeostasis of chondrocyte function. This study provides a comprehensive insight into the molecular regulatory processes induced in human chondrocytes during RA-related cartilage destruction. Experiment Overall Design: To reveal the RA-related chondrocyte gene expression profile, genome-wide microarray analysis of RASF stimulated human chondrocytes compared to NDSF stimulation was performed. Unstimulated chondrocytes were analyzed for baseline gene expression. For microarray analysis of RASF and NDSF stimulated and unstimulated chondrocytes, respectively, two RNA pools were analyzed, each pool consisting of equal amounts of RNA from three different donors.
Project description:The aim of the current study was to identify molecular markers for articular cartilage that can be used for the quality control of tissue engineered cartilage. Therefore a genom-wide expression analysis was performed using RNA isolated from articular and growth plate cartilage, both extracted from the knee joints of minipigs. Keywords: Native material or primary cells isolated from articular cartilage and growth plate cartilage Articular and growth plate cartilage were taken for RNA extraction and hybridization on Affymetrix microarrays. Furthermore chondrocytes from each type of cartilage were isolated and cell culture was started and terminated at day 10 or day 20. Total RNA from cultivated cells was extracted, and hybridization on Affymetrix microarrays was performed.
Project description:Rheumatoid arthritis (RA) leads to progressive destruction of articular structures. Despite recent progress in controlling inflammation and pain, little cartilage repair has yet been observed. This in vitro study aims to determine the role of chondrocytes in RA-related cartilage destruction and antirheumatic drug-related regenerative processes. Human chondrocytes were three-dimensionally cultured in alginate beads. To determine the RA-induced gene expression pattern, human chondrocytes were stimulated with supernatant of RA synovial fibroblasts (RASF) and normal donor synovial fibroblasts (NDSF), respectively. To examine antirheumatic drug response signatures, human chondrocytes were stimulated with supernatant of RASF that have been treated with disease-modifying antirheumatic drugs (DMARD; azathioprine, sodium aurothiomalate, chloroquine phosphate, methotrexate), non-steroidal anti-inflammatory drugs (NSAID; piroxicam, diclofenac) or steroidal anti-inflammatory drugs (SAID; methylprednisolone, prednisolone). Genome-wide expression profiling with oligonucleotide microarrays was used to determine differentially expressed genes. Real-time RT-PCR and ELISA were performed for validation of microarray data. Following antirheumatic treatment, microarray analysis disclosed a reverted expression of 94 RA-induced chondrocyte genes involved in inflammation/NF-κB signalling, cytokine/chemokine activity, immune response, proliferation/differentiation and matrix remodelling. Hierarchical clustering analysis showed that treatment of RASF with the DMARD azathioprine, gold sodium thiomalate and methotrexate resulted in chondrocyte gene expression signatures that were closely related to the âhealthyâ pattern. Treatment with the SAID methylprednisolone and prednisolone strongly reverted the RA-related chondrocyte gene expression, in particular the expression of genes involved in inflammation/NF-κB and cytokine/chemokine activity. The NSAID piroxicam and diclofenac and the DMARD chloroquine phosphate had only moderate to marginal effects. Pathway analysis determined major mechanisms of drug action, for example pathways of cytokine-cytokine receptor interaction, TGF-β/TLR/Jak-STAT signalling and ECM-receptor interaction were targeted. This in vitro study provides a comprehensive molecular insight into the antirheumatic drug response signatures in human chondrocytes, thereby revealing potential molecular targets, pathways and mechanisms of drug action involved in chondrocyte regeneration. Thus, the present study may contribute to the development of novel therapeutic chondro-protective compounds and strategies. Experiment Overall Design: Drug-related suppression of gene expression in activated chondrocytes was determined by genome-wide microarray analysis. Chondrocytes were stimulated with supernatant of RASF and NDSF. Effect of treatment with DMARDs, NSAIDs and glucocorticoids was tested by treating RASF prior to collection of supernatant. Two RNA pools were analyzed for each group (RASF-stimulated NDSF stimulated and RASF-treated), each pool consisting of equal amounts of RNA from three different donors.
Project description:BBF2H7 (BBF2 human homolog on chromosome 7), an ER-resident basic leucine zipper transcription factor, is activated in response to ER stress and abundantly expresses in chondrocytes. While BBF2H7 is widely expressed in many tissues and organs, the most intense signals were detected in the proliferating zone of the cartilage. We compared gene expressions in primary cultured chondrocytes prepared from rib cartilage between WT and BBF2H7-/- mice at E18.5. Primary cultured chondrocytes were prepared from E18.5 rib cartilage of WT and BBF2H7-/- mice. Chondrocytes were isolated using 0.2% collagenase D (Roche) after adherent connective tissue was removed by 0.2% trypsin (Sigma) and collagenase pretreatment. Isolated chondrocytes were maintained in α-MEM (Gibco) supplemented with 10% FCS and 50 µg/mL ascorbic acid. Adenovirus vectors expressing the mouse p60 BBF2H7 (1-377 aa, BBF-N) were constructed with the AdenoX Expression system (Clontech), according to the manufacturerâs protocol. The cells were infected with adenoviruses 30 h before analysis. We compared gene expressions in primary cultured chondrocytes prepared from rib cartilage between WT and BBF2H7-/- mice at E18.5 using a microarray and various genes associated with protein secretory pathway and ER biogenesis were significantly down-regulated in BBF2H7-/- chondrocytes. We infected primary cultured chondrocytes prepared from BBF2H7-/- mice with adenovirus expressing p60 BBF2H7. Several genes were up-regulated and we picked up them as the direct target of BBF2H7.
Project description:In mammals, temporally coordinated daily rhythms of behaviour and physiology are generated by a multi-oscillatory circadian system, entrained through cyclic environmental cues (e.g. light). Presence of niche-dependent physiological time cues have been proposed to allow local tissues flexibility of adopting a different phase relationship if circumstances require. Up till now, such tissue-unique stimuli have remained elusive. Here we show that cycles of mechanical loading and osmotic stimuli within physiological range drive rhythmic expression of clock genes and reset clock phase and amplitude in cartilage and intervertebral disc tissues.