Unknown

Dataset Information

0

Effect of Pressure Conditions in Uterine Decellularization Using Hydrostatic Pressure on Structural Protein Preservation.


ABSTRACT: Uterine regeneration using decellularization scaffolds provides a novel treatment for uterine factor infertility. Decellularized scaffolds require maximal removal of cellular components and minimal damage to the extracellular matrix (ECM). Among many decellularization methods, the hydrostatic pressure (HP) method stands out due to its low cytotoxicity and superior ECM preservation compared to the traditional detergent methods. Conventionally, 980 MPa was utilized in HP decellularization, including the first successful implementation of uterine decellularization previously reported by our team. However, structural protein denaturation caused by exceeding pressure led to a limited regeneration outcome in our previous research. This factor urged the study on the effects of pressure conditions in HP methods on decellularized scaffolds. The authors, therefore, fabricated a decellularized uterine scaffold at varying pressure conditions and evaluated the scaffold qualities from the perspective of cell removal and ECM preservation. The results show that by using lower decellularization pressure conditions of 250 MPa, uterine tissue can be decellularized with more preserved structural protein and mechanical properties, which is considered to be promising for decellularized uterine scaffold fabrication applications.

SUBMITTER: Wang D 

PROVIDER: S-EPMC10376797 | biostudies-literature | 2023 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Effect of Pressure Conditions in Uterine Decellularization Using Hydrostatic Pressure on Structural Protein Preservation.

Wang Dongzhe D   Charoensombut Narintadeach N   Kawabata Kinyoshi K   Kimura Tsuyoshi T   Kishida Akio A   Ushida Takashi T   Furukawa Katsuko S KS  

Bioengineering (Basel, Switzerland) 20230707 7


Uterine regeneration using decellularization scaffolds provides a novel treatment for uterine factor infertility. Decellularized scaffolds require maximal removal of cellular components and minimal damage to the extracellular matrix (ECM). Among many decellularization methods, the hydrostatic pressure (HP) method stands out due to its low cytotoxicity and superior ECM preservation compared to the traditional detergent methods. Conventionally, 980 MPa was utilized in HP decellularization, includi  ...[more]

Similar Datasets

| S-EPMC8708072 | biostudies-literature
| S-EPMC11480021 | biostudies-literature
| S-EPMC8997566 | biostudies-literature
2020-07-31 | GSE133703 | GEO
| S-EPMC8620206 | biostudies-literature
| S-EPMC2475645 | biostudies-literature
| S-EPMC10897145 | biostudies-literature
2005-12-30 | GSE3935 | GEO
| S-EPMC6242959 | biostudies-literature
| PRJNA552290 | ENA