Project description:Coccoloba cowellii Britton (Polygonaceae, order Caryophyllales) is an endemic and critically endangered plant species that only grows in the municipality of Camagüey, a province of Cuba. A preliminary investigation of its total methanolic extract led to the discovery of promising antifungal activity. In this study, a bioassay-guided fractionation allowed the isolation of quercetin and four methoxyflavonoids: 3-O-methylquercetin, myricetin 3,3',4'-trimethyl ether, 6-methoxymyricetin 3,4'-dimethyl ether, and 6-methoxymyricetin 3,3',4'-trimethyl ether. The leaf extract, fractions, and compounds were tested against various fungi and showed strong in vitro antifungal activity against Cryptococcus neoformans and various Candida spp. with no cytotoxicity (CC50 > 64.0 µg/mL) on MRC-5 SV2 cells, determined by a resazurin assay. A Candida albicans SC5314 antibiofilm assay indicated that the antifungal activity of C. cowellii extracts and constituents is mainly targeted to planktonic cells. The total methanolic extract showed higher and broader activity compared with the fractions and mixture of compounds.
Project description:Cistus incanus (Cistaceae) is a Mediterranean evergreen shrub. Cistus incanus herbal teas have been used as a general remedy in traditional medicine since ancient times. Recent studies on the antioxidant properties of its aqueous extracts have indicated polyphenols to be the most active compounds. However, a whole chemical characterisation of polyphenolic compounds in leaves of Cistus incanus (C. incanus) is still lacking. Moreover, limited data is available on the contribution of different polyphenolic compounds towards the total antioxidant capacity of its extracts. The purpose of this study was to characterise the major polyphenolic compounds present in a crude ethanolic leaf extract (CEE) of C. incanus and develop a method for their fractionation. Superoxide anion, hydroxyl and DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging assays were also performed to evaluate the antioxidant properties of the obtained fractions. Three different polyphenolic enriched extracts, namely EAC (Ethyl Acetate Fraction), AF1 and AF2 (Aqueos Fractions), were obtained from CEE. Our results indicated that the EAC, enriched in flavonols, exhibited a higher antiradical activity compared to the tannin enriched fractions (AF1 and AF2). These findings provide new perspectives for the use of the EAC as a source of antioxidant compounds with potential uses in pharmaceutical preparations.
Project description:Oxidative stress is among the major triggers for many important human functional disorders, which often lead to various metabolic or tissue diseases. The aim of the study is to obtain five standardized vegetal extracts (Cynarae extractum-CE, Rosmarini extractum-RE, Taraxaci extractum-TE, Cichorii extractum-CHE, and Agrimoniae extractum-AE) that contain active principles with an essential role in protecting liver cells against free radicals and quantify their antioxidant actions. The compounds of therapeutic interest from the analyzed extracts were identified and quantified using the UHPLC-HRMS/MS technique. Thus, the resulting identified compounds were 28 compounds in CE, 48 compounds in RE, 39 compounds in TE, 43 compounds in CHE, and 31 compounds in AE. These compounds belong to the class of flavonoids, isoflavones, phenolic acids and dicarboxylic acids, depsides, diterpenes, triterpenes, sesquiterpenes, proanthocyanidins, or coumarin derivatives. From the major polyphenolic compounds quantified in all the extracts analyzed by UHPLC-HRMS/MS, considerable amounts have been found for chlorogenic acid (619.8 µg/g extract for TE-2032.4 µg/g extract for AE), rutoside (105.1 µg/g extract for RE-1724.7 µg/g extract for AE), kaempferol (243 µg/g extract for CHE-2028.4 µg/g extract for CE), and for naringenin (383 µg/g extract for CHE-1375.8 µg/g extract for AE). The quantitative chemical analysis showed the highest content of total phenolic acids for AE (24.1528 ± 1.1936 g chlorogenic acid/100 g dry extract), the highest concentration of flavones for RE (6.0847 ± 0.3025 g rutoside/100 g dry extract), and the richest extract in total polyphenols with 31.7017 ± 1.2211 g tannic acid equivalent/100 g dry extract for AE. Several methods (DPPH, ABTS, and FRAP) have been used to determine the in vitro total antioxidant activity of the extracts to evaluate their free radical scavenging ability, influenced by the identified compounds. As a result, the correlation between the content of the polyphenolic compounds and the antioxidant effect of the extracts has been demonstrated. Statistically significant differences were found when comparing the antiradical capacity within the study groups. Although all the analyzed extracts showed good IC50 values, which may explain their antihepatotoxic effects, the highest antioxidant activity was obtained for Agrimoniae extractum (IC50ABTS = 0.0147 mg/mL) and the lowest antioxidant activity was obtained for Cynarae extractum (IC50ABTS = 0.1588 mg/mL). Furthermore, the hepatoprotective potential was evaluated in silico by predicting the interactions between the determined phytochemicals and key molecular targets relevant to liver disease pathophysiology. Finally, the evaluation of the pharmacognostic and phytochemical properties of the studied extracts validates their use as adjuvants in phytotherapy, as they reduce oxidative stress and toxin accumulation and thus exert a hepatoprotective effect at the cellular level.
Project description:Polyphenols are antioxidant ingredients in apples and are related to human health because of their free radical scavenging activities. The polyphenolic profiles of old and new apple cultivars (n = 15) were analysed using high-performance liquid chromatography (HPLC) with diode array detection (DAD). The in vitro antioxidant capacity was determined by total phenolic content (TPC) assay, hydrophilic trolox equivalent antioxidant capacity (H-TEAC) assay and hydrophilic oxygen radical absorbance (H-ORAC) assay. Twenty polyphenolic compounds were identified in all investigated apples by HPLC analysis. Quercetin glycosides (203 ± 108 mg/100 g) were the main polyphenols in the peel and phenolic acids (10 ± 5 mg/100 g) in the flesh. The calculated relative contribution of single compounds indicated flavonols (peel) and vitamin C (flesh) as the major contributors to the antioxidant capacity, in all cultivars investigated. The polyphenolic content (HPLC data) of the flesh differed significantly between old (29 ± 7 mg/100 g) and new (13 ± 4 mg/100 g) cultivars, and the antioxidant capacity of old apple cultivars was up to 30% stronger compared to new ones.
Project description:Uncaria tomentosa constitutes an important source of secondary metabolites with diverse biological activities mainly attributed until recently to alkaloids and triterpenes. We have previously reported for the first-time the polyphenolic profile of extracts from U. tomentosa, using a multi-step process involving organic solvents, as well as their antioxidant capacity, antimicrobial activity on aerial bacteria, and cytotoxicity on cancer cell lines. These promising results prompted the present study using food grade solvents suitable for the elaboration of commercial extracts. We report a detailed study on the polyphenolic composition of aqueous and ethanolic extracts of U. tomentosa bark and leaves (n = 16), using High Performance Liquid Chromatography coupled with Mass Spectrometry (HPLC-DAD/TQ-ESI-MS). A total of 32 compounds were identified, including hydroxybenzoic and hydroxycinnamic acids, flavan-3-ols monomers, procyanidin dimers and trimers, flavalignans⁻cinchonains and propelargonidin dimers. Our findings showed that the leaves were the richest source of total phenolics and proanthocyanidins, in particular propelargonidin dimers. Two-way Analysis of Variance (ANOVA) indicated that the contents of procyanidin and propelargonidin dimers were significantly different (p < 0.05) in function of the plant part, and leaves extracts showed higher contents. Oxygen Radical Absorbance Capacity (ORAC) and 2,2-diphenyl-1-picrylhidrazyl (DPPH) values indicated higher antioxidant capacity for the leaves (p < 0.05). Further, correlation between both methods and procyanidin dimers was found, particularly between ORAC and propelargonidin dimers. Finally, Principal Component Analysis (PCA) analysis results clearly indicated that the leaves are the richest plant part in proanthocyanidins and a very homogenous material, regardless of their origin. Therefore, our findings revealed that both ethanol and water extraction processes are adequate for the elaboration of potential commercial extracts from U. tomentosa leaves rich in proanthocyanidins and exhibiting high antioxidant activity.
Project description:Plasma Activated Water (PAW) has recently emerged as a promising non-chemical and non-thermal technology for the microbial decontamination of food. However, its use as a replacement for conventional disinfection solutions needs further investigation, as the impact of reactive species generated by PAW on nutritional food quality, toxicology, and safety is still unclear. The purpose of this study is to investigate how treatment with PAW affects the health-promoting properties of fresh-cut rocket salad (Eruca sativa). Therefore, the polyphenolic profile and antioxidant activity were evaluated by a combination of UHPLC-MS/MS and in vitro assays. Moreover, the effects of polyphenolic extracts on cell viability and oxidative status in Caco2 cells were assessed. PAW caused a slight reduction in the radical scavenging activity of the amphiphilic fraction over time but produced a positive effect on the total phenolic content, of about 70% in PAW-20, and an increase in the relative percentage (about 44–50%) of glucosinolate. Interestingly, the PAW polyphenol extract did not cause any cytotoxic effect and caused a lower imbalance in the redox status compared to an untreated sample. The obtained results support the use of PAW technology for fresh-cut vegetables to preserve their nutritional properties.
Project description:Evaluation of native plant resources and their efficient use is one of the current trends in phytochemistry. The main aim of the present study was to investigate the biological activities of different Rhododendron luteum Sweet leaf extracts obtained with the use of accelerated solvent extraction using different solvents and extraction temperatures. All extracts were subjected to bioactivity assays, which revealed considerable anti-lipoxygenase (23.07-90.13% lipoxygenase inhibition) and antiradical potential. All samples exhibited high 2,2-diphenyl-1-picrylhydrazyl (DPPH•) (234.18-621.90 mg Trolox equivalents (TE)/g) and 2,2'-azino-bis-3(ethylbenzthiazoline-6-sulphonic acid) (ABTS•+) (88.79-349.41 mg TE/g) scavenging activity, high antioxidant potential in the Oxygen Radical Absorbance Capacity (ORAC) assay (495.77-1011.59 mg TE/g), and moderate ion chelating (Fe2+) capacity. The chemical profile of each sample was determined using liquid chromatography/electrospray ionization triple quadrupole mass spectrometry (LC-ESI-MS/MS) and spectrophotometric procedures. Twenty-three compounds representing seven polyphenol subclasses were detected and quantified, including some phenolic acids and flavonoids that had not been previously reported for this plant material. It was shown that 5-O-caffeoylquinic acid, protocatechuic acid, catechin, quercetin and its glycosides (hyperoside, isoquercetin, quercitrin), and pentacyclic triterpenes were the dominant secondary metabolites in R. luteum leaves. The antioxidant activity was found to be strongly related to different polyphenol groups and total triterpene content, while the anti-lipoxygenase potential was highly dependent on catechin.
Project description:Dry leaf extracts of eastern teaberry (Gaultheria procumbens L.) were evaluated as a source of bioactive phytocompounds through systematic activity testing and phytochemical profiling. The antioxidant efficiency was tested using five complementary in vitro models (DPPH; FRAP; linoleic acid (LA) peroxidation assay; O2•- and H2O2 scavenging tests) in parallel with standard antioxidants. The 75% methanol extract and its diethyl ether, ethyl acetate (EAF), n-butanol and water fractions exhibited the dose-dependent responses in all assays, with the highest capacities found for EAF (DPPH EC50 = 2.9 μg/mL; FRAP = 12.8 mmol Fe2+/g; IC50 for LA-peroxidation = 123.9 μg/mL; O2•- SC50 = 3.9 μg/mL; H2O2 SC50 = 7.2 μg/mL). The EAF had also the highest anti-inflammatory activity in the inhibition tests of lipoxygenase and hyaluronidase (60.14% and 21.83% effects, respectively, at the concentration of 100 μg/mL). Activity parameters of the extracts correlated strongly with the levels of total phenolics (72.4-270.7 mg GAE/g), procyanidins, and phenolic acids, whereas for flavonoids only moderate effects were observed. Comprehensive UHPLC-PDA-ESI-MS3 and HPLC-PDA studies led to the identification of 35 polyphenols with a procyanidin A-type trimer, quercetin 3-O-glucuronide, isomers of caffeoylquinic acids, and (‒)-epicatechin being the dominant components. Significant activity levels, high phenolic contents and high extraction yields (39.4%-42.5% DW for defatted and crude methanol extracts, respectively) indicate the value of eastern teaberry leaves as bioactive products.
Project description:Oxidative stress has been associated with different diseases, and different medicinal plants have been used to treat or prevent this condition. The leaf ethanolic extract (EE) and aqueous extract (AE) from Coccoloba alnifolia have previously been characterized to have antioxidant potential in vitro and in vivo. In this study, we worked with EE and AE and two partition phases, AF (ethyl acetate) and BF (butanol), from AE extract. These extracts and partition phases did not display cytotoxicity. The EE and AE reduced NO production and ROS in all three concentrations tested. Furthermore, it was observed that EE and AE at 500 μg/mL concentration were able to reduce phagocytic activity by 30 and 50%, respectively. A scratch assay using a fibroblast cell line (NHI/3T3) showed that extracts and fractions induced cell migration with 60% wound recovery within 24 h, especially for BF. It was also observed that AF and BF had antioxidant potential in all the assays evaluated. In addition, copper chelation was observed. This activity was previously not detected in AE. The HPLC-DAD analysis showed the presence of phenolic compounds such as p-cumaric acid and vitexin for extracts, while the GNPS annotated the presence of isoorientin, vitexin, kanakugiol, and tryptamine in the BF partition phase. The data presented here demonstrated that the EE, AE, AF, and BF of C. alnifolia have potential immunomodulatory effects, antioxidant effects, as well as in vitro wound healing characteristics, which are important for dynamic inflammation process control.