Project description:Background: Anti-beta-1-adrenergic receptor antibodies (anti-β1AR Ab) are associated with ischemic cardiomyopathies (ICM). Evidence continues to emerge supporting an autoimmune component to various cardiac diseases. This study compares anti-β1AR Ab concentrations in patients with different entities of acute coronary syndromes (ACS) to asymptomatic non-ACS patients with positron-emission computed tomography (PET/CT)-proven atherosclerosis, and healthy controls. Methods: Serum anti-β1AR Ab IgG concentrations were measured in 212 ACS patients, 100 atherosclerosis patients, and 62 controls using ELISA. All ACS patients underwent coronary angiography. All 374 patients participating completed a structured questionnaire regarding traditional cardiovascular risk factors. ACS patients were followed up for 6 months. Results: Patients with ACS exhibited lower anti-β1AR Ab levels compared to patients with atherosclerosis or healthy controls (both p < 0.001). No differences in the ab levels were evident between healthy controls and patients with atherosclerosis. In the ACS groups, lower concentrations were found in patients with ST-elevation myocardial infarction (STEMI) (0.67 μg/ml) compared to patients with angina pectoris (AP) and non-ST elevation myocardial infarction (NSTEMI) (both 0.76 μg/ml, p = 0.008). Anti-β1AR Ab levels ≤ 0.772 μg/ml were predictive for death and reinfarction (AUC 0.77, p = 0.006). No significant correlations between anti-β1AR Ab levels and atherosclerotic burden or traditional cardiovascular risk factors were identified. Conclusions: Lower anti-β1AR Ab concentrations appear to characterize ACS phenotypes and could serve as diagnostic and prognostic markers independent from traditional risk factors for atheroscle. The prognostic predictive value of anti-β1AR Ab in ACS remains to be confirmed in larger studies.
Project description:IntroductionGenetic differences between races have been hypothesized to contribute to differences in outcome from acute coronary syndromes (ACS). Our objective was to assess racial differences in genetic variations in the platelet serotonin transporter (5HTT) and receptor in patients with ACS.Materials and methods127 consecutive patients, African Americans (AA) = 27; Caucasian (C) =100, admitted with ACS were evaluated for platelet function by serotonin (5HT) induced platelet activation. All patients were genotyped for two polymorphisms in the serotonin-transporter-linked polymorphic region (5-HTTLPR) S/L and LG/LA and one polymorphism of the serotonin 2A receptor (5-HT2A, T102C) gene. All patients were followed for major and minor adverse cardiac events at 12 months.ResultsAA when compared to C had a lower prevalence of the HTTLPR S allele (21% vs 45%, p = 0.0003) and a higher prevalence of the LG allele (24% vs 4.5%, p = 0.0001). Allelic frequency of the 5-HT2A T102C allele was not significantly different between the races. Platelet activation was lower in AA compared to C, median EC50 5HT was 12.08 μg vs 2.14 μg (p = 0.001). The 5-HTTLPR and the 5-HT2A polymorphisms were not associated with platelet functional responses to serotonin. There were no significant differences in major or minor adverse cardiac events in patients with serotonin transporter or receptor polymorphisms.ConclusionWe found a lower prevalence of the S allele and a higher prevalence of the G allele in AA with ACS. We also found decreased platelet activation in AA which did not correlate with serotonin-related platelet polymorphisms. It is unclear if other contributing factors may explain these platelet functional differences.
Project description:Although several risk factors exist for acute coronary syndrome (ACS) no biomarkers for survival or risk of re-infarction have been validated. Previously, reduced serum concentrations of anti-ß1AR Ab have been implicated in poorer ACS outcomes. This study further evaluates the prognostic implications of anti-ß1AR-Ab levels at the time of ACS onset. Serum anti-ß1AR Ab concentrations were measured in randomly selected patients from within the PLATO cohort. Stratification was performed according to ACS event: ST-elevation myocardial infarct (STEMI) vs. non-ST elevation myocardial infarct (NSTEMI). Antibody concentrations at ACS presentation were compared to 12-month all-cause and cardiovascular mortality, as well as 12-month re-infarction. Sub-analysis, stratifying for age and the correlation between antibody concentration and conventional cardiac risk-factors was subsequently performed. Serum anti-ß1AR Ab concentrations were measured in 400/799 (50%) STEMI patients and 399 NSTEMI patients. Increasing anti-ß1AR Ab concentrations were associated with STEMI (p = 0.001). Across all ACS patients, no associations between anti-ß1AR Ab concentration and either all-cause cardiovascular death or myocardial re-infarction (p = 0.14) were evident. However among STEMI patients ≤60 years with anti-ß1AR Ab concentration <median higher rates of re-infarction were observed, compared to those with anti-ß1AR Ab concentrations > median (14/198 (7.1%) vs. 2/190 (1.1%)); p = 0.01). Similarly, the same sub-group demonstrated greater risk of cardiovascular death in year 1, including re-infarction and stroke (22/198 (11.1%) vs. 10/190 (5.3%); p = 0.017). ACS Patients ≤60 years, exhibiting lower concentrations of ß1AR Ab carry a greater risk for early re-infarction and cardiovascular death. Large, prospective studies quantitatively assessing the prognostic relevance of Anti-ß1AR Ab levels should be considered.
Project description:The purpose of this study was to determine whether relationships exist among protein cytokines, cytokine gene polymorphisms, and symptoms of potential acute coronary syndrome (ACS). Participants included 438 patients presenting to the emergency department (ED) whose symptoms triggered a cardiac evaluation (206 ruled in and 232 ruled out for ACS). Presence or absence of 13 symptoms was recorded upon arrival. Levels of tumor necrosis factor α (TNF-α), interleukin (IL)-6, and IL-18 were measured for all patients. A pilot analysis of 85 patients (ACS = 49; non-ACS = 36) genotyped eight single-nucleotide polymorphisms (SNPs; four TNF and four IL6 SNPs). Logistic regression models were tested to determine whether cytokines or SNPs predicted symptoms. Increased levels of TNF-α and IL-6 were associated with a decreased likelihood of chest discomfort for all patients. Increased levels of IL-6 were associated with a lower likelihood of chest discomfort and chest pressure for ACS patients, and an increased likelihood of shoulder and upper back pain for non-ACS patients. Elevated IL-18 was associated with an increased likelihood of sweating in patients with ACS. Of the four TNF SNPs, three were associated with shortness of breath, lightheadedness, unusual fatigue, and arm pain. In all, protein cytokines and TNF polymorphisms were associated with 11 of 13 symptoms assessed. Future studies are needed to determine the predictive ability of cytokines and related SNPs for a diagnosis of ACS or to determine whether biomarkers can identify patients with specific symptom clusters.
Project description:The paramedics brought a 60-year-old man to the emergency department after a sudden onset of shortness of breath with a subsequent drop in the Glasgow Coma Scale (GCS). On arrival the patient looked peri-arrest. His O2 saturations were 84% on 15?L of oxygen. He had gasping breathing with a completely silent chest and the GCS was 6/15 (E=1, V=1, M=4). The blood gas revealed type-2 respiratory failure. The chest X-ray was unremarkable and ECG was not indicative for cardiac catheterisation lab activation. Bedside shock scan was done which showed global hypokinesia of the left ventricle. In spite of unconvincing ECG and chest X-ray, an acute cardiac event was diagnosed in view of an abnormal bedside echo. The patient was transferred to the cardiac catheterisation lab for urgent percutaneous coronary intervention which revealed critical stenosis of the left main stem coronary artery, which was successfully stented. The patient had a good recovery from the life-threatening event.
Project description:BackgroundGln27Glu (rs1042714) polymorphism of the β2-adrenergic receptor (ADRB2) has been association with cardiovascular functionality in healthy subjects. However, it is unknown whether the presence of the ADRB2 Gln27Glu polymorphism influences neurovascular responses during exercise in patients with acute coronary syndromes (ACS). We tested the hypothesis that patients with ACS homozygous for the Gln allele would have increased muscle sympathetic nerve activity (MSNA) responses and decreased forearm vascular conductance (FVC) responses during exercise compared with patients carrying the Glu allele (Gln27Glu and Glu27Glu). In addition, exercise training would restore these responses in Gln27Gln patients.Methods and resultsThirty-days after an ischemic event, 61 patients with ACS without ventricular dysfunction were divided into 2 groups: (1) Gln27Gln (n = 35, 53±1years) and (2) Gln27Glu+Glu27Glu (n = 26, 52±2years). MSNA was directly measured using the microneurography technique, blood pressure (BP) was measured with an automatic oscillometric device, and blood flow was measured using venous occlusion plethysmography. MSNA, mean BP, and FVC were evaluated at rest and during a 3-min handgrip exercise. The MSNA (P = 0.02) and mean BP (P = 0.04) responses during exercise were higher in the Gln27Gln patients compared with that in the Gln27Glu+Glu27Glu patients. No differences were found in FVC. Two months of exercise training significantly decreased the MSNA levels at baseline (P = 0.001) and in their response during exercise (P = 0.02) in Gln27Gln patients, but caused no changes in Gln27Glu+Glu27Glu patients. Exercise training increased FVC responses in Gln27Glu+Glu27Glu patients (P = 0.03), but not in Gln27Gln patients.ConclusionThe exaggerated MSNA and mean BP responses during exercise suggest an increased cardiovascular risk in patients with ACS and Gln27Gln polymorphism. Exercise training emerges as an important strategy for restoring this reflex control. Gln27Glu polymorphism of ADRB2 influences exercise-induced vascular adaptation in patients with ACS.
Project description:BackgroundThe highest mortality and morbidity worldwide is associated with atherosclerotic cardiovascular disease (ASCVD), which has in background both environmental and genetic risk factors. Apolipoprotein L1 (APOL1) variability influences the risk of ASCVD in Africans, but little is known about the APOL1 and ASCVD in other ethnic groups.MethodsTo investigate the role of APOL1 and ASCVD, we have genotyped four (rs13056427, rs136147, rs10854688 and rs9610473) APOL1 polymorphisms in a group of 1541 male patients with acute coronary syndrome (ACS) and 1338 male controls.ResultsIndividual APOL1 polymorphisms were not associated with traditional CVD risk factors such as smoking, hypertension or diabetes prevalence, with BMI values or plasma lipid levels. Neither individual polymorphisms nor haplotypes were associated with an increased risk of ACS nor did they predict total or cardiovascular mortality over the 10.2 ± 3.9 years of follow-up.ConclusionsWe conclude that APOL1 genetic variability has no major effect on risk of ACS in Caucasians.
Project description:Coronary CT angiography has high sensitivity, but modest specificity, to detect acute coronary syndrome. We studied whether adding resting CT myocardial perfusion imaging improved the detection of acute coronary syndrome.Patients with low-to-intermediate cardiac risk presenting with possible acute coronary syndrome received both the standard of care evaluation and a research thoracic 64-MDCT examination. Patients with an obstructive (> 50%) stenosis or a nonevaluable coronary segment on CT were diagnosed with possible acute coronary syndrome. CT perfusion was determined by applying gray and color Hounsfield unit maps to resting CT angiography images. Adjudicated patient diagnoses were based on the standard of care and 3-month follow-up. Patient-level diagnostic performance for acute coronary syndrome was calculated for coronary CT, CT perfusion, and combined techniques.A total of 105 patients were enrolled. Of the nine (9%) patients with acute coronary syndrome, all had obstructive CT stenoses but only three had abnormal CT perfusion. CT perfusion was normal in all other patients. To detect acute coronary syndrome, CT angiography had 100% sensitivity, 89% specificity, and a positive predictive value of 45%. For CT perfusion, specificity and positive predictive value were each 100%, and sensitivity was 33%. Combined cardiac CT and CT perfusion had similar specificity but a higher positive predictive value (100%) than did CT angiography.Resting CT perfusion using CT angiographic images may have high specificity and may improve CT positive predictive value for acute coronary syndrome without added radiation and contrast. However, normal resting CT perfusion cannot exclude acute coronary syndrome.
Project description:Rho-associated kinases play an important role in a variety of cellular functions. Although Rho-associated kinase activity has been shown to be an independent predictor for future cardiovascular events in a general population, there is no information on Rho-associated kinase activity in patients with acute coronary syndrome. We evaluated leukocyte Rho-associated kinase activity by Western blot analysis in 73 patients with acute coronary syndrome and 73 age- and gender-matched control subjects. Rho-associated kinase activity within 2 hours of acute coronary syndrome onset was higher in patients with acute coronary syndrome than in the control subjects (0.95±0.55 versus 0.69±0.31; P<0.001). Rho-associated kinase activity promptly increased from 0.95±0.55 to 1.11±0.81 after 3 hours and reached a peak of 1.21±0.76 after 1 day (P=0.03 and P=0.03, respectively) and then gradually decreased to 0.83±0.52 after 7 days, 0.78±0.42 after 14 days, and 0.72±0.30 after 6 months (P=0.22, P=0.29, and P=0.12, respectively). During a median follow-up period of 50.8 months, 31 first major cardiovascular events (death from cardiovascular causes, myocardial infarction, ischemic stroke, and coronary revascularization) occurred. After adjustment for age, sex, cardiovascular risk factors, and concomitant treatment with statins, increased Rho-associated kinase activity was associated with increasing risk of first major cardiovascular events (hazard ratio, 4.56; 95% confidence interval, 1.98-11.34; P<0.001). These findings suggest that Rho-associated kinase activity is dramatically changed after acute coronary syndrome and that Rho-associated kinase activity could be a useful biomarker to predict cardiovascular events in Japanese patients with acute coronary syndrome.
Project description:β-Adrenergic receptor blockers (β-blockers) are commonly used to treat heart failure, but the biologic mechanisms governing their efficacy are still poorly understood. The complexity of β-adrenergic signaling coupled with the influence of receptor polymorphisms makes it difficult to intuit the effect of β-blockers on cardiac physiology. While some studies indicate that β-blockers are efficacious by inhibiting β-adrenergic signaling, other studies suggest that they work by maintaining β-adrenergic responsiveness. Here, we use a systems pharmacology approach to test the hypothesis that in ventricular myocytes, these two apparently conflicting mechanisms for β-blocker efficacy can occur concurrently. We extended a computational model of the β(1)-adrenergic pathway and excitation-contraction coupling to include detailed receptor interactions for 19 ligands. Model predictions, validated with Ca(2+) and Förster resonance energy transfer imaging of adult rat ventricular myocytes, surprisingly suggest that β-blockers can both inhibit and maintain signaling depending on the magnitude of receptor stimulation. The balance of inhibition and maintenance of β(1)-adrenergic signaling is predicted to depend on the specific β-blocker (with greater responsiveness for metoprolol than carvedilol) and β(1)-adrenergic receptor Arg389Gly polymorphisms.