Project description:Bipolar disorder and schizophrenia are serious psychiatric conditions that cause a significant reduction in quality of life and shortened life expectancy. Treatments including medications and psychosocial support exist, but many people with these disorders still struggle to participate in society and some are resistant to current therapies. Although the exact pathophysiology of bipolar disorder and schizophrenia remains unclear, increasing evidence supports the role of oxidative stress and redox dysregulation as underlying mechanisms. Oxidative stress is an imbalance between the production of reactive oxygen species generated by metabolic processes and antioxidant systems that can cause damage to lipids, proteins, and DNA. Sleep is a critical regulator of metabolic homeostasis and oxidative stress. Disruption of sleep and circadian rhythms contribute to the onset and progression of bipolar disorder and schizophrenia and these disorders often coexist with sleep disorders. Furthermore, sleep deprivation has been associated with increased oxidative stress and worsening mood symptoms. Dysfunctional brain metabolism can be improved by fatty acid derived ketones as the brain readily uses both ketones and glucose as fuel. Ketones have been helpful in many neurological disorders including epilepsy and Alzheimer's disease. Recent clinical trials using the ketogenic diet suggest positive improvement in symptoms for bipolar disorder and schizophrenia as well. The improvement in psychiatric symptoms from the ketogenic diet is thought to be linked, in part, to restoration of mitochondrial function. These findings encourage further randomized controlled clinical trials, as well as biochemical and mechanistic investigation into the role of metabolism and sleep in psychiatric disorders. This narrative review seeks to clarify the intricate relationship between brain metabolism, sleep, and psychiatric disorders. The review will delve into the initial promising effects of the ketogenic diet on mood stability, examining evidence from both human and animal models of bipolar disorder and schizophrenia. The article concludes with a summary of the current state of affairs and encouragement for future research focused on the role of metabolism and sleep in mood disorders.
Project description:Acute Pancreatitis is a substantial health care challenge with increasing incidence. Patients who develop severe disease have considerable mortality. Currently, no reliable predictive marker to identify patients at risk for severe disease exists. Treatment is limited to rehydration and supporting care suggesting an urgent need to develop novel approaches to improve standard care. Activin is a critical modulator of inflammatory responses, but has not been assessed in pancreatitis. Here, we demonstrate that serum activin is elevated and strongly correlates with disease severity in two established murine models of acute pancreatitis induced by either cerulein or IL-12 + IL-18. Furthermore, in mice, inhibition of activin conveys survival benefits in pancreatitis. In addition, serum activin levels were measured from a retrospective clinical cohort of pancreatitis patients and high activin levels in patients at admission are predictive of worse outcomes, indicated by longer overall hospital and intensive care unit stays. Taken together, activin is a novel candidate as a clinical marker to identify those acute pancreatitis patients with severe disease who would benefit from aggressive treatment and activin may be a therapeutic target in severe acute pancreatitis.
Project description:BackgroundChanges in hygiene and dietary habits, including increased consumption of foods high in fat, simple sugars, and salt that are known to impact the composition and function of the intestinal microbiota, may explain the increase in prevalence of chronic inflammatory diseases. High salt consumption has been shown to worsen autoimmune encephalomyelitis and colitis in mouse models through p38/MAPK signaling pathway. However, the effect of high salt diet (HSD) on gut microbiota and on intestinal immune homeostasis, and their roles in determining vulnerability to intestinal inflammatory stimuli are unknown. Here, we investigate the role of gut microbiota alterations induced by HSD on the severity of murine experimental colitis.ResultsCompared to control diet, HSD altered fecal microbiota composition and function, reducing Lactobacillus sp. relative abundance and butyrate production. Moreover, HSD affected the colonic, and to a lesser extent small intestine mucosal immunity by enhancing the expression of pro-inflammatory genes such as Rac1, Map2k1, Map2k6, Atf2, while suppressing many cytokine and chemokine genes, such as Ccl3, Ccl4, Cxcl2, Cxcr4, Ccr7. Conventionally raised mice fed with HSD developed more severe DSS- (dextran sodium sulfate) and DNBS- (dinitrobenzene sulfonic acid) induced colitis compared to mice on control diet, and this effect was absent in germ-free mice. Transfer experiments into germ-free mice indicated that the HSD-associated microbiota profile is critically dependent on continued exposure to dietary salt.ConclusionsOur results indicate that the exacerbation of colitis induced by HSD is associated with reduction in Lactobacillus sp. and protective short-chain fatty acid production, as well as changes in host immune status. We hypothesize that these changes alter gut immune homeostasis and lead to increased vulnerability to inflammatory insults.
Project description:Severe acute pancreatitis (AP) is associated with a high mortality rate. Cold-inducible RNA binding protein (CIRP) can be released from cells in inflammatory conditions and extracellular CIRP acts as a damage-associated molecular pattern. This study aims to explore the role of CIRP in the pathogenesis of AP and evaluate the therapeutic potential of targeting extracellular CIRP with X-aptamers. Our results showed that serum CIRP concentrations were significantly increased in AP mice. Recombinant CIRP triggered mitochondrial injury and ER stress in pancreatic acinar cells. CIRP-/- mice suffered less severe pancreatic injury and inflammatory responses. Using a bead-based X-aptamer library, we identified an X-aptamer that specifically binds to CIRP (XA-CIRP). Structurally, XA-CIRP blocked the interaction between CIRP and TLR4. Functionally, it reduced CIRP-induced pancreatic acinar cell injury in vitro and L-arginine-induced pancreatic injury and inflammation in vivo. Thus, targeting extracellular CIRP with X-aptamers may be a promising strategy to treat AP.
Project description:Obesity increases the risk of adverse outcomes during acute critical illnesses such as burns, severe trauma, and acute pancreatitis. Although individuals with more body fat and higher serum cytokines and lipase are more likely to experience problems, the roles that these characteristics play are not clear. We used severe acute pancreatitis as a representative disease to investigate the effects of obesity on local organ function and systemic processes. In obese humans, we found that an increase in the volume of intrapancreatic adipocytes was associated with more extensive pancreatic necrosis during acute pancreatitis and that acute pancreatitis was associated with multisystem organ failure in obese individuals. In vitro studies of pancreatic acinar cells showed that unsaturated fatty acids were proinflammatory, releasing intracellular calcium, inhibiting mitochondrial complexes I and V, and causing necrosis. Saturated fatty acids had no such effects. Inhibition of lipolysis in obese (ob/ob) mice with induced pancreatitis prevented a rise in serum unsaturated fatty acids and prevented renal injury, lung injury, systemic inflammation, hypocalcemia, reduced pancreatic necrosis, and mortality. Thus, therapeutic approaches that target unsaturated fatty acid-mediated lipotoxicity may reduce adverse outcomes in obese patients with critical illnesses such as severe acute pancreatitis.
Project description:Acute pancreatitis (AP) is one of the most common diseases in gastroenterology. However, neither the etiology nor the pathophysiology of the disease is fully understood and no specific or effective treatment has been developed. Heparanase is an endoglycosidase that cleaves heparan sulfate (HS) side chains of HS sulfate proteoglycans into shorter oligosaccharides, activity that is highly implicated in cellular invasion associated with cancer metastasis and inflammation. Given that AP involves a strong inflammatory aspect, we examined whether heparanase plays a role in AP. Here, we provide evidence that pancreatic heparanase expression and activity are significantly increased following cerulein treatment. Moreover, pancreas edema and inflammation, as well as the induction of cytokines and signaling molecules following cerulein treatment were attenuated markedly by heparanase inhibitors, implying that heparanase plays a significant role in AP. Notably, all the above features appear even more pronounced in transgenic mice over expressing heparanase, suggesting that these mice can be utilized as a sensitive model system to reveal the molecular mechanism by which heparanase functions in AP. Heparanase, therefore, emerges as a potential new target in AP, and heparanase inhibitors, now in phase I/II clinical trials in cancer patients, are hoped to prove beneficial also in AP.
Project description:BackgroundPancreatitis-associated protein (PAP) is a secretory protein not normally expressed in healthy pancreas but highly induced during acute pancreatitis. While PAP has been shown to be anti-bacterial and anti-apoptotic in vitro, its definitive biological function in vivo is not clear.MethodsTo elucidate the function of PAP, antisense oligodeoxyribonucleotides (AS-PAP) targeting all three isoforms of PAP were administered via intrapancreatic injections (5 mg kg day, 2 days) to rats prior to induction of pancreatitis.ResultsSeverity of pancreatitis and cytokine gene expression in peripheral blood mononuclear cells (PBMC) were evaluated. Administration of AS-PAP, but not the scrambled oligodeoxyribonucleotide (SC-PAP) control, reduced pancreatitis-induced PAP expression by 55.2 +/- 6.4%, 44.0 +/- 8.9%, and 38.9 +/- 10.7% for PAP isoforms I, II, and III, respectively, compared to saline-treated controls (P < 0.05 for all). Inhibition of PAP expression significantly worsened pancreatitis: serum amylase activity, pancreas wet weight (reflecting edema), and serum C-reactive protein levels all increased in AS-PAP-treated animals compared to SC-PAP-treated controls (by 3.5-, 1.7-, and 1.7-fold, respectively; P < 0.05 for all). Histopathologic evaluation of pancreas revealed worsened edema, elevated leukocyte infiltration, and fat necrosis after AS-PAP treatment. Gene expressions of IL-1 microm and IL-4 were significantly higher in PBMC isolated from AS-PAP-treated rats compared to SC-PAP controls.ConclusionThis is the first in vivo evidence indicating that PAP mediates significant protection against pancreatic injury. Our data suggest that PAP may exert its protective function by suppressing local pancreatic as well as systemic inflammation during acute pancreatitis.
Project description:To elucidate the role of macrophage Anxa1 in the pathogenesis of AP, we intercrossed Anxa1flox/flox (Anxa1f/f or Anxa1 WT, as control) with Lyz2-Cre mice to create myeloid-specific Anxa1-knockout (Anxa1CKO) mice. We induced AP with repeated injection of cerulein in Anxa1CKO and Anxa1f/f littermates and examined the pancreas injury and inflammation. Pancreas tissue samples were collected at 12 hours after the first cerulein injection and performed RNA-seq.
Project description:BackgroundAcne, a chronic inflammatory disease impacting the pilosebaceous unit, is influenced significantly by inflammation and oxidative stress, and is commonly associated with obesity. Similarly, obesity is also associated with increased inflammation and oxidation. The role of diet in acne remains inconclusive, but the very low-calorie ketogenic diet (VLCKD), known for weight loss and generating anti-inflammatory ketone bodies, presents promising potential. Despite this, the effects of VLCKD on acne remain underexplored. This study aimed to investigate the efficacy of a 45-day active phase of VLCKD in reducing the clinical severity of acne in young women with treatment-naïve moderate acne and grade I obesity.MethodsThirty-one women with treatment-naïve moderate acne, grade I obesity (BMI 30.03-34.65 kg/m2), aged 18-30 years, meeting inclusion/exclusion criteria, and consenting to adhere to VLCKD were recruited. Baseline and post-intervention assessments included anthropometric measurements, body composition, phase angle (PhA), trimethylamine N-oxide (TMAO) levels, and reactive oxygen metabolite derivatives (dROMs) as markers of inflammation, dysbiosis, and oxidative stress, respectively. A comprehensive dermatological examination, incorporating the Global Acne Grading System (GAGS) and the Dermatology Life Quality Index (DLQI), was conducted for all women.ResultsVLCKD resulted in general improvements in anthropometric and body composition parameters. Significantly, there were significant reductions in both the GAGS score (Δ%: - 31.46 ± 9.53, p < 0.001) and the DLQI score (Δ%: - 45.44 ± 24.02, p < 0.001) after the intervention. These improvements coincided with significant decreases in TMAO (p < 0.001) and dROMs (p < 0.001) levels and a significant increase in PhA (Δ%: + 8.60 ± 7.40, p < 0.001). Changes in the GAGS score positively correlated with changes in dROMs (p < 0.001) and negatively with PhA (p < 0.001) even after adjusting for Δ% FM. Changes in the DLQI score positively correlated with changes in dROMs (p < 0.001) and negatively with PhA (p < 0.001) even after adjustment for Δ% FM.ConclusionGiven the side effects of drugs used for acne, there is an increasing need for safe, tolerable, and low-cost treatments that can be used for acne disease. The 45-day active phase of VLCKD demonstrated notable improvements in acne severity, and these improvements seemed to be attributable to the known antioxidant and anti-inflammatory effects of VLCKD.
Project description:Background and purposeAcute pancreatitis (AP) is a common acute abdominal condition, frequently associated with intestinal barrier dysfunction, which aggravates AP retroactively. Butyrate exhibits anti-inflammatory effects in a variety of inflammatory diseases. However, its potential beneficial effect on AP and the underlying mechanisms have not been investigated.Experimental approachExperimental AP was induced by caerulein hyperstimulation in wild-type and GPR109A-/- mice. Sodium butyrate was administered intragastrically for 7 days prior to caerulein hyperstimulation. Anti-inflammatory mechanisms of butyrate were further investigated in peritoneal macrophages.Key resultsButyrate prophylaxis attenuated AP as shown by reduced serum amylase and lipase levels, pancreatic oedema, myeloperoxidase activity, and improved pancreatic morphology. Amelioration of pancreatic damage by butyrate was associated with reduced levels of TNF-α, IL-6, and CCL2 and suppressed activation of the NLRP3 inflammasome in both pancreas and colon. Further, butyrate ameliorated pancreatic inflammation by suppressing interactions between histone deacetylase 1 (HDAC1) and AP1 and STAT1 with increased histone acetylation at H3K9, H3K14, H3K18, and H3K27 loci, resulting in suppression of NLRP3 inflammasome activation and modulation of immune cell infiltration in pancreas. Additionally, butyrate mediated STAT1/AP1-NLRP3 inflammasome suppression via HDAC1 inhibition was demonstrated in peritoneal macrophage. In colon, butyrate inhibited NLRP3 inflammasome activation via GPR109A. Accordingly, the modulatory effects of butyrate on AP, AP-associated gut dysfunction, and NLRP3 inflammasome activation were diminished in GPR109A-/- mice.Conclusion and implicationsOur study dissected tissue-specific anti-inflammatory mechanisms of butyrate during AP, suggesting that increased colonic levels of butyrate may be a strategy to protect against AP.