Project description:In vertebrates, female receptivity to male courtship is highly dependent on ovarian secretion of estrogens and prostaglandins. We recently identified female-specific neurons in the medaka (Oryzias latipes) preoptic area that express Npba, a neuropeptide mediating female sexual receptivity, in response to ovarian estrogens. Here we show by transcriptomic analysis that these neurons express a multitude of neuropeptides, in addition to Npba, in an ovarian-dependent manner, and we thus termed them female-specific, sex steroid-responsive peptidergic (FeSP) neurons. Our results further revealed that FeSP neurons express a prostaglandin E2 receptor gene, ptger4b, in an ovarian estrogen-dependent manner. Behavioral and physiological examination of ptger4b-deficient female medaka found that they exhibit increased sexual receptivity while retaining normal ovarian function and that their FeSP neurons have reduced firing activity and impaired neuropeptide release. Collectively, this work provides evidence that prostaglandin E2/Ptger4b signaling mediates the estrogenic regulation of FeSP neuron activity and female sexual receptivity.
Project description:AimTo understand the direct impact of bradykinin in autonomic control of circulation through baroreflex afferent pathway.MethodsThe mean arterial pressure (MAP) was monitored while bradykinin and its agonists were applied via nodose (NG) microinjection, the expression of bradykinin receptors (BRs) in the NG (1st -order) and nucleus tractus solitarius (NTS, 2nd -order) were tested in adult male, age-matched female, and ovariectomized rats under physiological and hypertensive conditions. Additionally, bradykinin-induced depolarization was also tested in identified baroreceptor and baroreceptive neurons using whole-cell patch-clamp technique.ResultsUnder physiological condition, bradykinin-induced dose- and estrogen-dependent reductions of MAP with lower estimated EC50 in females. B2 R agonist mediated more dramatic MAP reduction with long-lasting effect compared with B1 R activation. These functional observations were consistent with the molecular and immunostaining evidences. However, under hypertensive condition, the MAP reduction was significantly less dramatic in N' -Nitro-L-Arginine-methyl ester (L-NAME) induced secondary and spontaneous hypertension rats in males compared with female rats. Electrophysiological data showed that bradykinin-elicited concentration-dependent membrane depolarization with discharges during initial phase in identified myelinated Ah-types baroreceptor neurons, not myelinated A-types; while, higher concentration of bradykinin was required for depolarization of unmyelinated C-types without initial discharges.ConclusionThese datasets have demonstrated for the first time that bradykinin mediates direct activation of baroreflex afferent function to trigger estrogen-dependent depressor response, which is due mainly to the direct activation/neuroexcitation of female-specific myelinated Ah-type baroreceptor neurons leading to a sexual dimorphism in parasympathetic domination of blood pressure regulation via activation of B2 R/B1 R expression in baroreflex afferent pathway.
Project description:Peptidergic neurons often co-express fast transmitters and neuropeptides in separate vesicles with distinct release properties. However, the release dynamics of each transmitter in various contexts have not been fully understood in behaving animals. Here, we demonstrate that calcitonin gene-related peptide (CGRP) neurons in the external lateral subdivision of the parabrachial nucleus (CGRPPBel) encode opposing valence via differential release, rather than co-release, of glutamate and neuropeptides, according to firing rate. Glutamate is released preferentially at lower firing rates with minimal release at higher firing rates, whereas neuropeptides are released at higher firing rates, resulting in frequency-dependent switching of transmitters. Aversive stimuli evoke high frequency responses with accompanying neuropeptide release to encode negative valence, whereas appetitive stimuli evoke low frequency responses with glutamate release to encode positive valence. Our study reveals a previously unknown capability of single CGRPPBel neurons to bidirectionally encode valence via frequency-dependent differential release of transmitters in vivo.
Project description:Central estrogen signaling coordinates energy expenditure, reproduction, and in concert with peripheral estrogen impacts skeletal homeostasis in females. Here, we ablate estrogen receptor alpha (ERα) in the medial basal hypothalamus and find a robust bone phenotype only in female mice that results in exceptionally strong trabecular and cortical bones, whose density surpasses other reported mouse models. Stereotaxic guided deletion of ERα in the arcuate nucleus increases bone mass in intact and ovariectomized females, confirming the central role of estrogen signaling in this sex-dependent bone phenotype. Loss of ERα in kisspeptin (Kiss1)-expressing cells is sufficient to recapitulate the bone phenotype, identifying Kiss1 neurons as a critical node in this powerful neuroskeletal circuit. We propose that this newly-identified female brain-to-bone pathway exists as a homeostatic regulator diverting calcium and energy stores from bone building when energetic demands are high. Our work reveals a previously unknown target for treatment of age-related bone disease.
Project description:AbstractThe role of the major estrogen estradiol (E2) on orofacial pain conditions remains controversial with studies reporting both a pronociceptive and antinociceptive role of E2. E2 modulation of peripheral serotonergic activity may be one mechanism underlying the female prevalence of orofacial pain disorders. We recently reported that female rats in proestrus and estrus exhibit greater serotonin (5HT)-evoked orofacial nocifensive behaviors compared with diestrus and male rats. Further coexpression of 5HT 2A receptor mRNA in nociceptive trigeminal sensory neurons that express transient receptor potential vanilloid 1 ion channels contributes to pain sensitization. E2 may exacerbate orofacial pain through 5HT-sensitive trigeminal nociceptors, but whether low or high E2 contributes to orofacial pain and by what mechanism remains unclear. We hypothesized that steady-state exposure to a proestrus level of E2 exacerbates 5HT-evoked orofacial nocifensive behaviors in female rats, explored the transcriptome of E2-treated female rats, and determined which E2 receptor contributes to sensitization of female trigeminal sensory neurons. We report that a diestrus level of E2 is protective against 5HT-evoked orofacial pain behaviors, which increase with increasing E2 concentrations, and that E2 differentially alters several pain genes in the trigeminal ganglia. Furthermore, E2 receptors coexpressed with 5HT 2A and transient receptor potential vanilloid 1 and enhanced capsaicin-evoked signaling in the trigeminal ganglia through estrogen receptor α. Overall, our data indicate that low, but not high, physiological levels of E2 protect against orofacial pain, and we provide evidence that estrogen receptor α receptor activation, but not others, contributes to sensitization of nociceptive signaling in trigeminal sensory neurons.
Project description:The gonadotropin-releasing hormone (GnRH) pulse and surge are considered to be generated by arcuate kisspeptin/neurokinin B/dynorphin A (KNDy) neurons and anteroventral periventricular nucleus (AVPV) kisspeptin neurons, respectively, in female rodents. The majority of KNDy and AVPV kisspeptin neurons express κ-opioid receptors (KORs, encoded by Oprk1) in female rodents. Thus, this study aimed to investigate the effect of a conditional Oprk1-dependent Kiss1 deletion in kisspeptin neurons on the luteinizing hormone (LH) pulse/surge and fertility using Kiss1-floxed/Oprk1-Cre rats, in which Kiss1 was deleted in cells expressing or once expressed the Oprk1/Cre. The Kiss1-floxed/Oprk1-Cre female rats, with Kiss1 deleted in a majority of KNDy neurons, showed normal puberty while having a one-day longer estrous cycle and fewer pups than Kiss1-floxed controls. Notably, ovariectomized (OVX) Kiss1-floxed/Oprk1-Cre rats showed profound disruption of LH pulses in the presence of a diestrous level of estrogen but showed apparent LH pulses without estrogen treatment. Furthermore, Kiss1-floxed/Oprk1-Cre rats, with Kiss1 deleted in approximately half of AVPV kisspeptin neurons, showed a lower peak of the estrogen-induced LH surge than controls. These results suggest that arcuate and AVPV kisspeptin neurons expressing or having expressed Oprk1 have a role in maintaining normal GnRH pulse and surge generation, the normal length of the estrous cycle, and the normal offspring number in female rats.
Project description:Gallbladder cancer is a highly aggressive disease with poor prognosis that is two to six times more frequent in women than men. The development of gallbladder cancer occurs over a long time (more than 15 y) and evolves from chronic inflammation to dysplasia/metaplasia, carcinoma in situ, and invasive carcinoma. In the present study we found that, in female mice in which the oxysterol receptor liver X receptor-beta (LXRbeta) has been inactivated, preneoplastic lesions of the gallbladder developed and evolved to cancer in old animals. LXRbeta is a nuclear receptor involved in the control of lipid homeostasis, glucose metabolism, inflammation, proliferation, and CNS development. LXRbeta(-/-) female gallbladders were severely inflamed, with regions of dysplasia and high cell density, hyperchromasia, metaplasia, and adenomas. No abnormalities were evident in male mice, nor in LXRalpha(-/-) or LXRalpha(-/-)beta(-/-) animals of either sex. Interestingly, the elimination of estrogens with ovariectomy prevented development of preneoplastic lesions in LXRbeta(-/-) mice. The etiopathological mechanism seems to involve TGF-beta signaling, as the precancerous lesions were characterized by strong nuclear reactivity of phospho-SMAD-2 and SMAD-4 and loss of E-cadherin expression. Upon ovariectomy, E-cadherin was reexpressed on the cell membranes and immunoreactivity of pSMAD-2 in the nuclei was reduced. These findings suggest that LXRbeta in a complex interplay with estrogens and TGF-beta could play a crucial role in the malignant transformation of the gallbladder epithelium.
Project description:The medial preoptic area has been shown to be intricately involved in many behaviors, including locomotion, sexual behavior, maternal care, and aggression. The gene encoding estrogen receptor-? (ER?) protein is expressed in preoptic area neurons, and a very dense immunoreactive field of ER? is found in the preoptic region. ER? knockout animals show deficits in maternal care and sexual behavior and fail to exhibit increases in these behaviors in response to systemic estradiol treatment. In the present study, we used viral-vector mediated RNA interference to silence ER? expression specifically in the preoptic area of female mice and measured a variety of behaviors, including social and sexual aggression, maternal care, and arousal activity. Suppression of ER? in the preoptic area almost completely abolished maternal care, significantly increasing the latency to pup retrieval and significantly reducing the time the moms spent nursing and licking the pups. Strikingly, maternal aggression toward a male intruder was not different between control and preoptic ER?-silenced mice, demonstrating the remarkably specific role of ER? in these neurons. Reduction of ER? expression in preoptic neurons significantly decreased sexual behavior in female mice and increased aggression toward both sexual partners and male intruders in a seminatural environment. Estrogen-dependent increases in arousal, measured by home cage activity, were not mediated by ER? expression in the preoptic neurons we targeted, as ER?-suppressed mice had increases similar to control mice. Thus, we have established that a specific gene in a specific group of neurons is required for a crucially important natural behavior.
Project description:Optimizing reproductive fitness in mammalians requires behavioral adaptations during pregnancy. Maternal preparatory nesting is an essential behavior for the survival of the upcoming litter. Brain-wide immediate early gene mapping in mice evoked by nesting sequences revealed that phases of nest construction strongly activate peptidergic neurons of the Edinger-Westphal nucleus in pregnant mice. Genetic ablation, bidirectional neuromodulation, and in vitro and in vivo activity recordings demonstrated that these neurons are essential to modulate arousal before sleep to promote nesting specifically. We show that these neurons enable the behavioral effects of progesterone on preparatory nesting by modulating a broad network of downstream targets. Our study deciphers the role of midbrain CART+ neurons in behavioral adaptations during pregnancy vital for reproductive fitness.
Project description:The majority of orofacial pain is caused by musculoskeletal and neuropathological diseases related to inflammatory processes that lead even to transcriptional alterations in the trigeminal ganglion (TG) neurons. The hypothalamic nonapeptide oxytocin has been reported to modulate nociception via binding and activating its receptor in primary sensory neurons. The purpose of this study was to analyze the gene expression of the oxytocin receptor (OTR), c-Fos, an indicator of neuronal activity, and α-calcitonin gene-related peptide (αCGRP), a characteristic neurotransmitter of the peptidergic trigeminal primary afferents in an animal model of inflammation-induced orofacial pain. Carrageenan was unilaterally injected into the vibrissal pads of male and female adult Wistar rats. RT-qPCR was performed to analyze the levels of mRNA expression in TGs 24 h after injection. The gene expression analysis revealed higher fold changes regarding the c-Fos (mean ± S.E: ♀: 3.9 ± 0.19; ♂: 3.55 ± 0.18) and αCGRP (♀: 2.84 ± 0.13; ♂: 3.39 ± 0.47) expression levels of mRNA, and a moderate rise in the expression of the OTR mRNA (♀: 1.52 ± 0.07; ♂: 1.49 ± 0.07) was observed in comparison to both vehicle(saline)-treated and untreated controls. Our results furnish evidence for inflammation-induced activation of peptidergic neurons, and it is suggested that oxytocin modulates inflammation-induced nociception by enhancing their signaling capacity due to its elevated expression in the sensory ganglion cells, thus providing new therapies for orofacial pain relief that target the OTRs.