Project description:ObjectiveTo compare the cumulative live birth rate (CLBR) of the progestin-primed ovarian stimulation (PPOS) protocol with that of the flexible GnRH antagonist protocol in patients with poor prognosis diagnosed per the POSEIDON criteria.MethodsThis was a retrospective cohort study. Low-prognosis women who underwent IVF/ICSI at the Reproductive Center of Third Affiliated Hospital of Zhengzhou University between January 2016 and January 2019 were included according to the POSEIDON criteria. The CLBR was the primary outcome of interest. The secondary outcome measures were the numbers of oocytes retrieved, 2PN embryos, available embryos and time to live birth.ResultsA total of 1329 women met the POSEIDON criteria for analysis. For POSEIDON group 1, the dosage of gonadotropin (Gn) was higher in the PPOS group than in the GnRH antagonist group (2757.3 ± 863.1 vs 2419.2 ± 853.1, P=0.01). The CLBR of the PPOS protocols was 54.4%, which was similar to the rate of 53.8% in the GnRH antagonist group. For POSEIDON group 2, the number of available embryos was higher in the PPOS group (2.0 ± 1.7 vs 1.6 ± 1.4, P=0.02) than in the GnRH antagonist group. However, the CLBRs of the two groups were similar (18.1% vs 24.3%, P=0.09). For POSEIDON groups 3 and 4, there were no statistically significant differences in the number of oocytes retrieved, 2PN, available embryos or CLBR between the two protocols. After adjustments for confounding factors, the CLBR remained consistent with the unadjusted rates. In the POSEIDON group 1 population, the GnRH antagonist protocols had a shorter time to live birth (P=0.04).ConclusionFor low-prognosis patients diagnosed per the POSEIDON criteria, the CLBR of PPOS protocols is comparable to that of GnRH antagonist protocols. In the POSEIDON group 1 population, the GnRH antagonist protocols resulted in a shorter time to live birth.
Project description:Background: The potential correlation between progestin-primed ovarian stimulation (PPOS) and the risk of compromised embryo competence still lacks sound evidence. Methods: A large retrospective cohort study was used to compare the incidence of pregnancy loss and neonatal birthweights in frozen embryo transfer (FET) cycles using embryos from PPOS and GnRH analogue protocols. Propensity matched scores were used to balance the baseline confounders. Results: A total of 5744 matched cycles with positive hCG test were included to compare the pregnancy outcomes. The incidence of pregnancy loss was similar between PPOS and GnRH analogue groups (19.2% vs. 18.4%, RR 1.02 (0.97, 1.06), p > 0.05). The neonatal birthweights were comparable between two groups, respectively, for singleton births (3337.0 ± 494.4 g vs. 3346.0 ± 515.5 g) and in twin births (2496.8 ± 429.2 g vs. 2533.2 ± 424.2 g) (p > 0.05). Conclusions: The similar incidence of pregnancy loss and neonatal birthweights in FET cycles using embryos from PPOS provided us with a more complete picture about the safety of PPOS.
Project description:BackgroundWhether pretreatment with gonadotropin-releasing hormone agonist (GnRHa) can improve the pregnancy outcomes in frozen-thawed embryo transfer (FET) cycles is controversial. The inconsistencies in the results of different studies would be related to the characteristics of the included patients and the protocol of GnRHa use. In this study, we investigated the efficacy of pretreatment with a long-acting GnRH agonist in the early follicular phase of FET cycles and determined which population was suitable for the protocol.ResultsWe retrospectively included 630 and 1141 patients in the GnRHa FET and hormone replacement treatment (HRT) FET without GnRHa groups respectively, between October 2017 and March 2019 at a university-affiliated in vitro fertilization center. On the second or third day of menstruation, 3.75 mg of leuprorelin was administered. After 14 days, HRT was initiated for endometrial preparation. No significant differences were observed between the two groups in terms of patient characteristics. However, the GnRHa FET group showed a higher percentage of endometrium with a triple line pattern (94.8% vs 89.6%, p < 0.001) on the day of progesterone administration, with increased implantation (35.6% vs 29.8%, p = 0.005), clinical pregnancy (49.8% vs 43.3%, p = 0.008), and live birth rate (39.4% vs 33.7%, p = 0.016), than the HRT FET cycles with similar endometrial thickness, ectopic pregnancy and early miscarriage rates. Binary logistic regression analysis showed the GnRHa FET group to be associated with an increased chance of clinical pregnancy (P=0.028, odds ratio [OR] 1.32, 95% confidence interval [CI] 1.03-1.70) and live birth (P=0.013, odds ratio [OR] 1.34, 95% confidence interval [CI] 1.06-1.70) compared to the HRT FET without GnRHa group. After subgroup analysis, we found that the GnRHa FET group showed a significantly higher live birth rate in the subgroups of age < 40 years, primary infertility, with polycystic ovary syndrome (PCOS), and irregular menstruation.ConclusionsPretreatment with a long-acting GnRHa during the early follicular phase improved the live birth rate in FET cycles. Age < 40 years, primary infertility, PCOS, and irregular menstruation are effective indications for endometrial preparation with GnRHa pretreatment in FET cycles. However, further randomized controlled trials are required to verify these results.
Project description:Study questionDoes supplementation with vaginal tablets of progesterone after frozen-thawed embryo transfer in natural cycles improve the live birth rate?Summary answerSupplementation with vaginal tablets of progesterone after frozen-thawed embryo transfer in natural cycles significantly improves the number of live births.What is known alreadyProgesterone supplementation during luteal phase and early pregnancy may improve the number of live births after frozen-thawed embryo transfer. However, due to the limited number of previous studies, being mainly retrospective, evidence is still limited.Study design, size, durationThis is a prospective randomized controlled trial, performed at two university clinics. In total, 500 subjects were randomized with a 1:1 allocation into two groups, during the period February 2013 to March 2018. Randomization was performed after a frozen embryo transfer in a natural cycle by use of opaque sealed envelopes. The primary outcome was live birth rate; secondary outcomes were pregnancy, biochemical pregnancy, clinical pregnancy and miscarriage rate, and if there was a possible association between the serum progesterone concentration on the day of embryo transfer and live birth rate.Participants/materials, setting, methodsWomen, receiving embryo transfer in natural cycles participated in the study. The embryos were frozen on Day 2, 3, 5 or 6. In total, 672 women having regular menstrual cycles were invited to participate in the study; of those, 500 agreed to participate and 488 were finally included in the study. Half of the study subjects received progesterone supplementation with progesterone vaginal tablets, 100 mg twice daily, starting from the day of embryo transfer. The other half of the subjects were not given any treatment. Blood samples for serum progesterone measurements were collected from all subjects on the day of embryo transfer.Main results and the role of chanceThere were no differences in background characteristics between the study groups. In the progesterone supplemented group, 83 of 243 patients (34.2%) had a live birth, compared to 59 of 245 patients (24.1%) in the control group (odds ratio 1.635, 95% CI 1.102-2.428, P = 0.017*). The number of pregnancies was 104 of 243 (42.8%) and 83 of 245 (33.9%), respectively (odds ratio 1.465, 95% CI 1.012-2.108, P = 0.049*) and the number of clinical pregnancies was 91 of 243 (37.4%) and 70 of 245 (28.6%), respectively (odds ratio 1.497, 95% CI 1.024-2.188, P = 0.043*). There were no significant differences in biochemical pregnancy rate or miscarriage rate. There was no correlation between outcome and serum progesterone concentration.Limitations, reasons for cautionThe study was not blinded because placebo tablets were not available. Supplementation started on embryo transfer day, regardless of the age of the embryos, which resulted in a shorter supplementation time for Day 5/6 embryos compared to Day 2/3 embryos.Wider implications of the findingsSupplementation with progesterone in natural cycles improved the number of live births after frozen-thawed embryo transfer and should therefore be considered for introduction in clinical routine.Study funding/competing interest(s)The study was funded by Uppsala University, the Uppsala-Family Planning Foundation, and Ferring Pharmaceuticals AB, Malmö, Sweden. The authors have no personal conflicting interests to declare.Trial registration numberNL4152.Trial registration date5 December 2013.Date of first patient’s enrolment18 February 2013.
Project description:ObjectiveTo compare cumulative live birth rate (LBR) between progestin-primed ovarian stimulation (PPOS) and GnRH antagonist protocols of preimplantation genetic testing (PGT) cycles in different populations.MethodsThis was a retrospective cohort study. A total of 865 patients were enrolled and separate analyses were performed for three populations: 498 patients with predicted normal ovarian response (NOR), 285 patients with PCOS, and 82 patients with predicted poor ovarian response (POR). The primary outcome was cumulative LBR for one oocyte retrieval cycle. The results of response to ovarian stimulation were also investigated, including numbers of oocytes retrieved, MII oocytes, 2PN, blastocysts, good-quality blastocysts, and usable blastocysts after biopsy, as well as rates of oocyte yield, blastocyst formation, good-quality blastocysts, and moderate or severe OHSS. Univariable and multivariable logistic regression analyses were used to identify potential confounders that may be independently associated with cumulative live birth.ResultsIn NOR, the cumulative LBR of PPOS protocol was significantly lower than that of GnRH antagonists (28.4% vs. 40.7%; P=0.004). In multivariable analysis, the PPOS protocol was negatively associated with cumulative LBR (adjusted OR=0.556; 95% CI, 0.377-0.822) compared to GnRH antagonists after adjusting for potential confounders. The number and ratio of good-quality blastocysts were significantly reduced in PPOS protocol compared to GnRH antagonists (2.82 ± 2.83 vs. 3.20 ± 2.79; P=0.032 and 63.9% vs. 68.5%; P=0.021), while numbers of oocytes, MII oocytes and 2PN did not show any significant difference between GnRH antagonist and PPOS protocols. PCOS patients had similar outcomes as NOR. The cumulative LBR of PPOS group appeared to be lower than that of GnRH antagonists (37.4% vs. 46.1%; P=0.151), but not significantly. Meanwhile, the proportion of good-quality blastocysts in PPOS protocol was also lower compared to GnRH antagonists (63.5% vs. 68.9%; P=0.014). In patients with POR, the cumulative LBR of PPOS protocol was comparable to that of GnRH antagonists (19.2% vs. 16.7%; P=0.772). There was no statistical difference in the number and rate of good-quality blastocysts between the two protocols in POR, while the proportion of good-quality blastocysts appeared to be higher in PPOS group compared to GnRH antagonists (66.7% vs. 56.3%; P=0.182). In addition, the number of usable blastocysts after biopsy was comparable between the two protocols in three populations.ConclusionThe cumulative LBR of PPOS protocol in PGT cycles is lower than that of GnRH antagonists in NOR. In patients with PCOS, the cumulative LBR of PPOS protocol appears to be lower than that of GnRH antagonists, albeit lacking statistical difference, whereas in patients with diminished ovarian reserve, the two protocols were comparable. Our findings suggest the need for caution when choosing PPOS protocol to achieve live births, especially for normal and high ovarian responders.
Project description:Background: The availability and use of frozen-thawed embryos after controlled ovarian hyperstimulation for assisted reproduction have increased with improvements in vitrification techniques and the rise of gonadotropin-releasing hormone (GnRH) antagonist protocols. Although evidence has shown that frozen-thawed embryo transfers (FETs) result in higher live birth rates than fresh embryo transfers, it is uncertain whether this association exists in cycles employing the GnRH antagonist protocol. Objective: To test the hypothesis that FETs are more likely to result in a live birth than fresh embryo transfers in a GnRH antagonist protocol cycle and to investigate whether frozen blastocyst transfer increases live birth rates compared to fresh blastocyst transfer. Design: A retrospective historical cohort study was conducted using data collected from the Department of Reproductive Medicine of Liuzhou Maternity and Child Healthcare Hospital for 1,437 patients who underwent the GnRH antagonist protocol between 1 January 2015, and 31 December 2020. The primary outcome was the live birth rate, which was compared between fresh embryo transfer and FET, and the secondary outcomes were clinical pregnancy rate and miscarriage rate, which were compared between the two groups. Analyses were adjusted to account for the age of the patient, number of embryo transfers, day of embryo transfer, and type of infertility. Results: Fresh embryo transfers accounted for 1,026 (71.4%) of the 1,437 patients who underwent the GnRH antagonist protocol in our analysis, while FETs accounted for 411 (28.6%). Patients with fresh and frozen-thawed embryos had comparable median body mass index (body mass index; 22.3 [IQR, 24.6-20.0] vs. 22.0 [IQR, 24.5-19.9]). There was a significant difference in the median age of the fresh embryo transfer group (34.0 [IQR, 39.0-30.0]) and the Frozen-thawed embryo transfer group (32.0 [IQR, 37.0-29.0]). Blastocysts were transferred in 14.6% of the fresh embryo transfer cycles and 45.5% of the FET cycles, whereas they account for 10.4% and 13.0% of all patients, respectively. The mean number of embryos transferred was 2 (IQR, 2.0-1.0) for the fresh embryo transfer group and 1 (IQR, 2.0-1.0) for the FET group, with a significant difference in the mean number of embryos transferred. The live birth rate after fresh embryo transfer vs. FET was 28.7% vs. 34.5% (absolute difference, 5.9%; adjusted relative risk [aRR], 1.15 [95% CI, 0.88-1.51]). The clinical pregnancy rates were 39.9% vs. 46.0%, respectively (absolute difference, 6.1%; aRR, 1.10 [95% CI, 0.85-1.43]). The miscarriage rates were 22.5% vs. 23.8%, respectively (absolute difference, 1.3%; aRR, 1.13 [95% CI, 0.75-1.70]). Conclusion: In this retrospective study of women who underwent assisted reproduction using GnRH antagonists, FETs resulted in a higher live birth rates and clinical pregnancy rates than fresh embryo transfers, which parts of these differences were attributable to embryo stage. However, the interpretation of the findings is limited by the possibility of selection and confounding biases.
Project description:BackgroundStudy objectives included the development of a practical nomogram for predicting live birth following frozen-thawed embryo transfers in ovulatory women.MethodsTotally, 2884 patients with regular menstrual cycles in our center were retrospectively enrolled. In an 8:2 ratio, we randomly assigned patients to training and validation cohorts. Then we identified risk factors by multivariate logistic regression and constructed nomogram. Finally, receiver operating characteristic curve analysis, calibration curve and decision curve analysis were performed to assess the calibration and discriminative ability of the nomogram.ResultsWe identified five variables which were related to live birth, including age, anti-Müllerian hormone (AMH), protocol of frozen-thawed embryo transfer (FET), stage of embryos and amount of high-quality embryos. We then constructed nomograms that predict the probabilities of live birth by using those five parameters. Receiver operating characteristic curve analysis (ROC) showed that the area under the curve (AUC) for live birth was 0.666 (95% CI: 0.644-0.688) in the training cohort. The AUC in the subsequent validation cohorts was 0.669 (95% CI, 0.625-0.713). The clinical practicability of this nomogram was demonstrated through calibration curve analysis and decision curve analysis.ConclusionsOur nomogram provides a visual and simple tool in predicting live birth in ovulatory women who received FET. It could also provide advice and guidance for physicians and patients on decision-making during the FET procedure.
Project description:BackgroundThe objective of this study was to explore the clinical application of noninvasive chromosomal screening (NICS) for elective single-blastocyst transfer (eSBT) in frozen-thawed cycles.MethodsThis study retrospectively analysed the data of 212 frozen-thawed single-blastocyst transfers performed in our centre from January 2019 to July 2019. The frozen embryos were selected based on morphological grades and placed in preincubation for 6 h after warming. Then spent microdroplet culture media of frozen-thawed blastocysts were harvested and subjected to NICS. The clinical outcomes were evaluated and further stratified analysis were performed, especially different fertilization approaches.ResultsThe clinical pregnancy, ongoing pregnancy, and live birth rates in the euploidy group were significantly higher than those in the aneuploidy group (56.2% versus 29.4%) but were nonsignificantly different from those in the chaotic abnormal/NA embryos group (56.2% versus 60.4%). Compared with day6 (D6) blastocysts, D5 blastocysts had a nonsignificantly different euploidy rate (40.4% versus 48.1%, P = 0.320) but significantly increased clinical pregnancy (57.7% versus 22.2%, P < 0.001), ongoing pregnancy (48.1% versus 14.8%, P < 0.001), and live birth rates (48.1% versus 13.0%, P < 0.001). The percentage of chaotic abnormal/NA embryos group was significantly higher among D5 embryos than among D6 embryos (30.1% versus 11.1%, P = 0.006). The percentage of aneuploid embryos was higher among the embryos with lower morphological quality(21.5% among 'good' embryos versus 34.6% among 'fair' embryos versus 46.0% among 'poor' embryos, P = 0.013); correspondingly, the overall clinical pregnancy, ongoing pregnancy and live birth rate rates showed similar declines.ConclusionsNICS combined with morphological assessment is an effective tool to guide frozen-thawed SBT. The optimal embryo for SBT is a 'euploid embryo with good morphology', followed sequentially by a 'chaotic abnormal/NA embryo with good morphology', 'euploid embryo with fair morphology', and 'chaotic abnormal/NA embryo with fair morphology'.
Project description:PurposeTo compare the effects of different endometrial preparation protocols for frozen-thawed embryo transfer (FET) cycles and present treatment hierarchy.MethodsSystematic review with meta-analysis was performed by electronic searching of MEDLINE, the Cochrane Library, Embase, ClinicalTrials.gov and Google Scholar up to Dec 26, 2020. Randomised controlled trials (RCTs) or observational studies comparing 7 treatment options (natural cycle with or without human chorionic gonadotrophin trigger (mNC or tNC), artificial cycle with or without gonadotropin-releasing hormone agonist suppression (AC+GnRH or AC), aromatase inhibitor, clomiphene citrate, gonadotropin or follicle stimulating hormone) in FET cycles were included. Meta-analyses were performed within random effects models. Primary outcome was live birth presented as odds ratio (OR) with 95% confidence intervals (CIs).ResultsTwenty-six RCTs and 113 cohort studies were included in the meta-analyses. In a network meta-analysis, AC ranked last in effectiveness, with lower live birth rates when compared with other endometrial preparation protocols. In pairwise meta-analyses of observational studies, AC was associated with significant lower live birth rates compared with tNC (OR 0.81, 0.70 to 0.93) and mNC (OR 0.85, 0.77 to 0.93). Women who achieved pregnancy after AC were at an increased risk of pregnancy-induced hypertension (OR 1.82, 1.37 to 2.38), postpartum haemorrhage (OR 2.08, 1.61 to 2.78) and very preterm birth (OR 2.08, 1.45 to 2.94) compared with those after tNC.ConclusionNatural cycle treatment has a higher chance of live birth and lower risks of PIH, PPH and VPTB than AC for endometrial preparation in women receiving FET cycles.
Project description:PurposeThe goal of this study was to compare pregnancy outcomes between natural frozen embryo transfer (FET) cycles in ovulatory women and programmed FET cycles in anovulatory women after undergoing in vitro fertilization with preimplantation genetic screening (IVF-PGS).MethodsThis was a retrospective cohort study performed at an academic medical center. Patients undergoing single FET IVF-PGS cycles between October 2011 and December 2014 were included. Patients were stratified by type of endometrial replacement: programmed cycles with estrogen/progesterone replacement and natural cycles. IVF-PGS with 24-chromosome screening was performed on all included patients. Those patients with euploid embryos had single embryo transfer in a subsequent FET. The primary study outcome was live birth/ongoing pregnancy rate. Secondary outcomes included implantation, biochemical pregnancy, and miscarriage rates.ResultsOne hundred thirteen cycles met inclusion criteria: 65 natural cycles and 48 programmed cycles. The programmed FET group was younger (35.9 ± 4.5 vs. 37.5 ± 3.7, P = 0.03) and had a higher AMH (3.95 ± 4.2 vs. 2.37 ± 2.4, P = 0.045). The groups were similar for BMI, gravidity, parity, history of uterine surgery, and incidence of Asherman's syndrome. There was also no difference in embryo grade at biopsy or transfer, and proportion of day 5 and day 6 transfers. Implantation rates were higher in the natural FET group (0.66 ± 0.48 vs. 0.44 ± 0.50, P = 0.02). There was no difference in the rates of biochemical pregnancy or miscarriage. After controlling for age, live birth/ongoing pregnancy rate was higher in natural FETs with an adjusted odds ratio of 2.68 (95% CI 1.22-5.87).ConclusionsNatural FET in ovulatory women after IVF-PGS is associated with increased implantation and live birth rates compared to programmed FET in anovulatory women. Further investigation is needed to determine whether these findings hold true in other patient cohorts.