Project description:BackgroundChronic lung disease (CLD) is the most common pulmonary morbidity in extremely preterm infants. It is unclear to what extent prenatal exposures influence the risk of CLD. Epigenetic variation in placenta DNA methylation may be associated with differential risk of CLD, and these associations may be dependent upon sex.MethodsData were obtained from a multi-center cohort of infants born extremely preterm (<28 weeks' gestation) and an epigenome-wide approach was used to identify associations between placental DNA methylation and CLD (n = 423). Associations were evaluated using robust linear regression adjusting for covariates, with a false discovery rate of 0.05. Analyses stratified by sex were used to assess differences in methylation-CLD associations.ResultsCLD was associated with differential methylation at 49 CpG sites representing 46 genes in the placenta. CLD was associated with differential methylation of probes within genes related to pathways involved in fetal lung development, such as p53 signaling and myo-inositol biosynthesis. Associations between CpG methylation and CLD differed by sex.ConclusionsDifferential placental methylation within genes with key roles in fetal lung development may reflect complex cell signaling between the placenta and fetus which mediate CLD risk. These pathways appear to be distinct based on fetal sex.ImpactIn extremely preterm infants, differential methylation of CpG sites within placental genes involved in pathways related to cell signaling, oxidative stress, and trophoblast invasion is associated with chronic lung disease of prematurity. DNA methylation patterns associated with chronic lung disease were distinctly based on fetal sex, suggesting a potential mechanism underlying dimorphic phenotypes. Mechanisms related to fetal hypoxia and placental myo-inositol signaling may play a role in fetal lung programming and the developmental origins of chronic lung disease. Continued research of the relationship between the placental epigenome and chronic lung disease could inform efforts to ameliorate or prevent this condition.
Project description:IntroductionAlthough obstructive airway disease has been shown to be associated with prematurity, other spirometry phenotypes are less well described.ObjectivesWe characterised abnormal spirometry phenotypes in preterm-born children, including prematurity-associated obstructive lung disease (POLD, forced expiratory volume in 1 s (FEV1)<lower limit of normal (LLN), FEV1/forced vital capacity (FVC)<LLN), prematurity-associated preserved ratio of impaired spirometry (pPRISm, FEV1<LLN, FEV1/FVC≥LLN) and prematurity-associated dysanapsis (pDysanapsis, FEV1≥LLN, FEV1/FVC<LLN), and associated them with early life factors, bronchodilator responsiveness and fractional exhaled nitric oxide (FENO).Methods768 children, aged 7-12 years, underwent FENO measurements and spirometry before and after salbutamol. Groups were compared using parametric tests; multinomial regression was used.Results22.6% of 544 preterm-born (mean gestation: 31 weeks) and 9.2% of 195 term-born children, with satisfactory data available, were classified into one of four abnormal spirometry groups. Each phenotype was generally more prevalent in preterm-born children than in the term-born children. For the preterm group, POLD-reversible (4.4%) was associated with increased FENO, bronchopulmonary dysplasia (BPD) and intrauterine growth restriction. POLD-fixed group (3.3%) did not have increased FENO but was associated with BPD. 41% of the pDysanapsis group (5.9%) had bronchodilator response, 31% had increased FENO and was associated with postnatal weight gain. In the pPRISm group (9%), 13% responded to bronchodilators, FENO was not increased and was non-significantly associated with body mass index (p=0.064).ConclusionsFurther to airway obstruction, we describe airway dysanapsis and pPRISm spirometry phenotypes in survivors of prematurity, both of which have poor outlook in other disease groups. By identifying specific phenotypes, targeted therapy can be developed to improve long-term outcomes.
Project description:IntroductionMechanisms underlying lung dysfunction after preterm birth are poorly understood. Studying phenotypes of prematurity-associated lung disease may aid understanding of underlying mechanisms. Preterm-born children with and without lung dysfunction and term controls were assessed using oscillometry before and after exercise, and after postexercise bronchodilation.MethodsPreterm-born children, born at gestation of 34 weeks or less, were classified into those with prematurity-associated obstructive lung disease (POLD; FEV1 < LLN, FEV1 /FVC < LLN), prematurity-associated preserved ratio of impaired spirometry (pPRISm; FEV1 < LLN, FEV1 /FVC ≥ LLN) and compared to preterm (FEV1 ≥ LLN) and term controls (%predicted FEV1 > 90%). All children underwent cardiopulmonary exercise, and oscillometry assessment at baseline, postexercise, and after postexercise bronchodilator administration.ResultsFrom 241 participants aged 7-12 years, complete data were available from 179: 15 children with POLD and 11 with pPRISm were compared with 93 preterm and 60 term controls. POLD group, when compared to both control groups, had impaired impedance, greater resistance, more negative (greater magnitude) reactance at low frequencies, and also had decreased compliance. pPRISm group demonstrated impaired reactance and compliance compared to term controls. No differences were noted between the preterm and term controls. Exercise had little impact on oscillometry values, but children with POLD had greatest improvements after postexercise bronchodilator administration, with decreased resistance and decreased magnitude of reactance, particularly at low frequencies.ConclusionPreterm-born children with obstructive airway disease had the greatest oscillometry impairments and the largest improvements after postexercise bronchodilator compared to control groups. Oscillometry can potentially be used to identify preterm-born children with lung disease to institute treatment.
Project description:Prematurity-associated lung disease (PLD) is a long-term consequence of preterm-birth. Since the underlying mechanisms of PLD remain poorly characterised, we compared the urinary metabolome between recently described spirometry phenotypes of PLD. Preterm- and term-born children aged 7-12 years, from the Respiratory Health Outcomes in Neonates (RHiNO) cohort, underwent spirometry and urine collection. The urinary metabolome was analysed by gas chromatography time-of-flight mass spectrometry. Preterm-born children were classified into phenotypes of prematurity-associated obstructive lung disease (POLD, Forced expiratory volume in 1 s (FEV1) < lower limit of normal (LLN), FEV1/Forced Vital Capacity (FVC) < LLN), prematurity-associated preserved ratio impaired spirometry (pPRISm, FEV1 < LLN, FEV1/FVC ≥ LLN) and Preterm/Term controls (FEV1 ≥ LLN). Metabolite set enrichment analysis was used to link significantly altered metabolites between the groups with metabolic pathways. Univariable and multivariable linear regression models examined associations between early and current life factors and significantly altered metabolites of interest. Urine from 197 preterm- and 94 term-born children was analysed. 23 and 25 were classified into POLD and pPRISm groups respectively. Of 242 identified metabolites, 49 metabolites were significantly altered in the POLD group compared with Preterm controls. Decreased capric acid (log2 fold change - 0.23; p = 0.003), caprylic acid (- 0.18; 0.003) and ceratinic acid (- 0.64; 0.014) in the POLD group, when compared to preterm controls, were linked with reduced β-oxidation of very long chain fatty acids (p = 0.004). Reduced alanine (log2 fold change - 0.21; p = 0.046), glutamic acid (- 0.24; 0.023), and pyroglutamic acid (- 0.17; 0.035) were linked with decreased glutathione metabolism (p = 0.008). These metabolites remained significantly associated with POLD in multivariable models adjusting for early/current life factors. The pPRISm urinary metabolome was minimally changed when compared with preterm-born controls. When compared to term-born subjects, alterations in tryptophan metabolism were implicated (p = 0.01). The urinary metabolome in POLD showed significantly altered β-oxidation of fatty acids and glutathione metabolism, implying alterations in cellular metabolism and oxidative stress. Similar findings have been noted in adults with chronic obstructive pulmonary disease. Given the similarity of findings between the POLD group and those reported for COPD, the POLD group should be considered at future risk of developing COPD.
Project description:IntroductionAlthough different phenotypes of lung disease after preterm birth have recently been described, the underlying mechanisms associated with each phenotype are poorly understood. We, therefore, compared the urinary proteome for different spirometry phenotypes in preterm-born children with preterm- and term-born controls.MethodsPreterm and term-born children aged 7-12 years, from the Respiratory Health Outcomes in Neonates (RHiNO) cohort, underwent spirometry and urine collection. Urine was analysed by Nano-LC Mass-Spectrometry with Tandem-Mass Tag labelling. The preterm-born children were classified into phenotypes of prematurity-associated preserved ratio impaired spirometry (pPRISm, FEV1 < lower limit of normal (LLN), FEV1/FVC ≥ LLN), prematurity-associated obstructive lung disease (POLD, FEV1 < LLN, FEV1/FVC < LLN) and preterm controls (FEV1 ≥ LLN,). Biological relationships between significantly altered protein abundances were analysed using Ingenuity Pathways Analysis software, and receiver operator characteristic curves were calculated.ResultsUrine was analysed from 160 preterm-born children and 44 term controls. 27 and 21 were classified into the pPRISm and POLD groups, respectively. A total of 785 proteins were detected. Compared to preterm-born controls, sixteen significantly altered proteins in the pPRISm group were linked to six biological processes related to upregulation of inflammation and T-cell biology. In contrast, four significantly altered proteins in the POLD group were linked with neutrophil accumulation. Four proteins (DNASE1, PGLYRP1, B2M, SERPINA3) in combination had an area under the curve of 0.73 for pPRISm and three combined proteins (S100A8, MMP9 and CTSC) had AUC of 0.76 for POLD.ConclusionsIn this exploratory study, we demonstrate differential associations of the urinary proteome with pPRISm and POLD.Trial registrationEudraCT: 2015-003712-20.
Project description:BackgroundAlthough bronchopulmonary dysplasia (BPD) is associated with lung function deficits in childhood, many who develop BPD have normal lung function in childhood and many without BPD, including those born at 33-34 weeks of gestation, have lung dysfunction in childhood. Since the predictability of BPD for future lung deficits is increasingly doubted, we prospectively recruited preterm-born children to identify early-life factors associated with lung function deficits after preterm birth.MethodsFrom 767 children aged 7-12 years who had their respiratory symptoms assessed, and had spirometry before and after a bronchodilator in our Respiratory Health Outcomes in Neonates (RHiNO) study, 739 (544 preterm-born at ≤34 weeks of gestation and 195 term-born) had satisfactory lung function. Data were analysed using multivariable logistic regression and mediation.ResultsWhen preterm-born children were classified according to their lung function, low lung function (prematurity-associated lung disease (PLD)) was associated with BPD, gestation and intra-uterine growth restriction (IUGR) on univariable logistic regression analyses. However, on multivariable logistic regression analyses, gestation (β= -0.153, se 0.051; p=0.003) and IUGR (OR 1.783, 95% CI 1.06-3.00; p=0.029) remained significantly associated with later deficits of lung function, but BPD (OR 0.99, 95% CI 0.52-1.89; p=0.974) did not. Mediation analyses confirmed these results.ConclusionsAlthough traditionally BPD has been associated with low lung function in later life, the data show that gestation and IUGR are significantly associated with PLD in childhood, but BPD is not. By identifying children with PLD, we can better understand the underlying mechanisms and develop optimal therapies.
Project description:IntroductionPreterm-born children have their normal in-utero lung development interrupted, thus are at risk of short- and long-term lung disease. Spirometry and exercise capacity impairments have been regularly reported in preterm-born children especially those who developed chronic lung disease of prematurity (CLD) in infancy. However, specific phenotypes may be differentially associated with exercise capacity. We investigated exercise capacity associated with prematurity-associated obstructive (POLD) or prematurity-associated preserved ratio of impaired spirometry (pPRISm) when compared to preterm- and term-controls with normal lung function.Materials and methodsPreterm- and term-born children identified through home screening underwent in-depth lung function and cardiorespiratory exercise testing, including administration of postexercise bronchodilator, as part of the Respiratory Health Outcomes in Neonates (RHiNO) study.ResultsFrom 241 invited children, aged 7-12 years, 202 underwent exercise testing including 18 children with POLD (percent predicted (%)FEV1 and FEV1 /FVC < LLN); 12 pPRISm (%FEV1 < LLN and FEV1 /FVC ≥ LLN), 106 preterm-controls (PTc , %FEV1 ≥ LLN) and 66 term-controls (Tc , %FEV1 > 90%). POLD children had reduced relative workload, peak O2 uptake, CO2 production, and minute ventilation compared to Tc , and used a greater proportion of their breathing reserve compared to both control groups. pPRISm and PTc children also had lower O2 uptake compared to Tc . POLD children had the greatest response to postexercise bronchodilator, improving their %FEV1 by 19.4% (vs 6.3%, 6% 6.3% in pPRISm PTc, Tc , respectively; p < .001).ConclusionPreterm-born children with obstructive airway disease had the greatest impairment in exercise capacity, and significantly greater response to postexercise bronchodilators. These classifications can be used to guide treatment in children with POLD.
Project description:AimTo examine the role of Ureaplasma urealyticum colonisation or infection in neonatal lung disease.MethodsEndotracheal aspirates from ventilated infants less than 28 weeks of gestation were cultured for U urealyticum and outcomes compared in infants with positive and negative cultures.ResultsU urealyticum was isolated from aspirates of 39 of 143 (27%) infants. Respiratory distress syndrome (RDS) occurred significantly less often in colonised, than in non-colonised infants (p=0.002). Multivariate logistic regression analysis showed that in singleton infants, ureaplasma colonisation was the only independent (negative) predictor of RDS (OR 0.36; p=0. 02). Both gestational age (OR 0.46; p=0.006) and isolation of U urealyticum (OR 3.0; p=0.05) were independent predictors of chronic lung disease (CLD), as defined by requirement for supplemental oxygen at 36 weeks of gestational age. Multiple gestation was also a major independent predictor of RDS and CLD.ConclusionsColonisation or infection with ureaplasma apparently protects premature infants against the development of RDS (suggesting intrauterine infection). However, in singleton infants, it predisposes to development of CLD, independently of gestational age. Treatment of affected infants after birth is unlikely to significantly improve the outcome and methods are required to identify and treat the women with intrauterine ureaplasmal infection, before preterm delivery occurs.
Project description:Premature infants suffer significant respiratory morbidity during infancy with long-term negative consequences on health, quality of life, and health care costs. Enhanced susceptibility to a variety of infections and inflammation play a large role in early and prolonged lung disease following premature birth, although the mechanisms of susceptibility and immune dysregulation are active areas of research. This article reviews aspects of host-pathogen interactions and immune responses that are altered by preterm birth and that impact chronic respiratory morbidity in these children.
Project description:Interstitial lung disease (ILD) is one of the most serious pulmonary complications associated with connective tissue diseases (CTDs), resulting in significant morbidity and mortality. Although the various CTDs associated with ILD often are considered together because of their shared autoimmune nature, there are substantial differences in the clinical presentations and management of ILD in each specific CTD. This heterogeneity and the cross-disciplinary nature of care have complicated the conduct of prospective multicenter treatment trials and hindered our understanding of the development of ILD in patients with CTD. In this update, we present new information regarding the diagnosis and treatment of patients with ILD secondary to systemic sclerosis, rheumatoid arthritis, dermatomyositis and polymyositis, and Sjögren syndrome. We review information on risk factors for the development of ILD in the setting of CTD. Diagnostic criteria for CTD are presented as well as elements of the clinical evaluation that increase suspicion for CTD-ILD. We review the use of medications in the treatment of CTD-ILD. Although a large, randomized study has examined the impact of immunosuppressive therapy for ILD secondary to systemic sclerosis, additional studies are needed to determine optimal treatment strategies for each distinct form of CTD-ILD. Finally, we review new information regarding the subgroup of patients with ILD who meet some, but not all, diagnostic criteria for a CTD. A careful and systematic approach to diagnosis in patients with ILD may reveal an unrecognized CTD or evidence of autoimmunity in those previously believed to have idiopathic ILD.