HIV-1 proviral DNA in purified peripheral blood CD34+ stem and progenitor cells in individuals with long-term HAART; paving the way to HIV gene therapy
Project description:Individuals who have been preinfected by human cytomegalovirus (HCMV) are more prone to AIDS disease progression after subsequent HIV-1 infection but the underlying mechanism remains elusive. HCMV is a ubiquitous DNA virus that commonly establishes lifelong latent infection in CD34+ progenitor cells, where latency-specific HCMV genes may modulate host restriction to HIV-1 infection. To test this hypothesis, we studied progenitor cells that are known to resist replicative HIV-1 infection because of the intrinsic expression of host restriction factors. Interestingly, in primary CD34+ cells undergoing latent HCMV infection, an enhanced level of HIV-1 proviral DNA and replication was observed as measured by digital polymerase chain reaction, quantitative polymerase chain reaction, and Gag expression, and confirmed using dual-reporter pseudovirus encoding X4- or R5-tropic envelope and T-cell transfer. This phenomenon may be partially explained by the upregulation of HIV-1 entry coreceptors, including chemokine receptors CXCR4 and CCR5, but not of the primary receptor CD4. Furthermore, latent HCMV infection downregulated the expression of HIV-1 restriction factors SAMHD1, APOBEC3G, tetherin, and Mx2 in CD34+ progenitor cells, which may confer to enhanced HIV-1 infection. However, this enhancement was abrogated when ultraviolet-inactivated HCMV was used for comparison, suggesting that expression of latent HCMV genes is essential for this effect. Importantly, HCMV gB and HIV-1 p24 can be detected in the same cell by immunofluorescence and flow cytometry; therefore, the establishment of HCMV latency in CD34+ cells likely leads to host cell gene modulation that favors HIV-1 infection.
Project description:CD34+ hematopoietic progenitor cells (HPCs) offer great opportunities to develop new treatments for numerous malignant and non-malignant diseases. Nanoparticle (NP)-based strategies can further enhance this potential, and therefore a thorough understanding of the loading behavior of HPCs towards NPs is essential for a successful application. The present study focusses on the interaction kinetics of 40 nm sized carboxylated polystyrene (PS) NPs with HPCs. Interestingly, a transient association of the NPs with HPCs is observed, reaching a maximum within 1 hour and declining afterwards. This behavior is not seen in dendritic cells (CD34-DCs) differentiated from HPCs, which display a monotonic increase in NP load. We demonstrate that this transient interaction requires an energy-dependent cellular process, suggesting active loading and release of NPs by HPCs. This novel observation offers a unique approach to transiently equip HPCs. A simple theoretical approach modeling the kinetics of NP loading and release is presented, contributing to a framework of describing this phenomenon.
Project description:Allogeneic haematopoietic stem cell transplantation is curative for severe aplastic anaemia (SAA) unresponsive to immunosuppressive therapy. To reduce chronic graft-versus-host disease (GVHD), which occurs more frequently after peripheral blood stem cell (PBSC) transplantation compared to bone-marrow transplantation (BMT), and to prevent graft rejection, we developed a novel partial T-cell depleted transplant that infuses high numbers of granulocyte colony-stimulating factor-mobilized CD34+ selected PBSCs combined with a BMT-equivalent dose of non-mobilized donor T-cells. Fifteen patients with refractory SAA received cyclophosphamide, anti-thymocyte globulin and fludarabine conditioning, and were transplanted with a median 8 × 106 CD34+ cells/kg and 2 × 107 non-mobilized CD3+ T-cells/kg from human leucocyte antigen-matched sibling donors. All achieved sustained engraftment with only two developing acute and two developing chronic GVHD. With a 3·5-year median follow-up, 86% of patients survived and were transfusion-independent. When compared to a retrospective cohort of 56 bone-marrow failure patients that received the identical transplant preparative regimen and GVHD prophylaxis with the exception that the allograft contained unmanipulated PBSCs, partial T-cell depleted transplant recipients had delayed donor T-cell chimerism and relative reduction of 75% in the incidence of acute grade II-IV GVHD (13% vs. 52%; P = 0·010) and of 82% in chronic GVHD (13% vs. 72%; P = 0·0004). In multivariate analysis, partial T-cell depleted transplants remained significantly associated with a reduced risk of GVHD. In conclusion, for patients with refractory SAA, this novel transplant strategy achieves excellent engraftment and survival when compared to unmanipulated PBSC transplants and dramatically reduces the incidence of both acute and chronic GVHD.
Project description:Haematopoietic stem cell transplantation (HSCT) is now an established practice with over 70,000 transplants performed annually, and over 1.5 million around the world so far. The practice of HSCT has improved over the years due to advances in conditioning regiments, preparatory practices for patients leading up to the transplant, graft versus host disease (GVHD) and infection prophylaxis, as well as a better selection of patients. However, in many instances, the stem cells supplied to the patient may not be adequate for optimal transplantation outcomes. This may be seen in a few areas including umbilical cord blood transplantation, inadequate bone marrow, peripheral blood stem cell harvest, or gene therapy. Growing and expanding HSCs in culture would provide an increase in cell numbers prior to stem cell infusion and accelerate haematopoietic recovery, resulting in improved outcomes. Several new technologies have emerged in recent years, which have facilitated the expansion of haematopoietic stem and progenitor cells (HSPCs) in culture with good outcomes in vitro, in vivo, and in clinical trials. In this review, we will outline some of the reasons for the expansion of HSPCs as well as the new technologies facilitating the advances in HSCT.
Project description:Personalized medicine is promising a revolution for medicine and human biology in the 21st century. The scientific foundation for this revolution is accomplished by analyzing biological high-throughput data sets from genomics, transcriptomics, proteomics, and metabolomics. Currently, access to these data has been limited to either rather simple Web-based tools, which do not grant much insight or analysis by trained specialists, without firsthand involvement of the physician. Here, we present the novel Web-based tool "BioMiner," which was developed within the scope of an international and interdisciplinary project (SYSTHER) and gives access to a variety of high-throughput data sets. It provides the user with convenient tools to analyze complex cross-omics data sets and grants enhanced visualization abilities. BioMiner incorporates transcriptomic and cross-omics high-throughput data sets, with a focus on cancer. A public instance of BioMiner along with the database is available at http://systherDB.microdiscovery.de/, login and password: "systher"; a tutorial detailing the usage of BioMiner can be found in the Supplementary File.
Project description:CD34+-selected stem cell boost (SCB) without conditioning has recently been utilized for poor graft function (PGF) after allogeneic hematopoietic stem cell transplantation with promising results. Unfortunately, many patients have been unable to receive the boost infusion as their donors were unwilling or unable to undergo an additional stem cell collection. Therefore, we conducted this study utilizing either fresh or cryopreserved peripheral blood stem cell products to create CD34+-selected boost infusions for the treatment of PGF. Additionally, to explore relationship of CD34+ dose and response, we included a cohort of donors mobilized with plerixafor in addition to the standard granulocyte colony-stimulating factor (G-CSF). Twenty-six patients with PGF were included in this study. Seventeen donor-recipient pairs were enrolled onto the prospective study; an additional 9 patients treated off protocol were reviewed retrospectively. Three different donor products were used for CD34+ selection: (1) fresh mobilized product using G-CSF only, (2) fresh mobilized products using G-CSF and plerixafor, and (3) cryopreserved cells mobilized with G-CSF. CD34+ cell selection was performed using a CliniMACS. The infusion was not preceded by administration of any chemotherapy or conditioning regimen. The primary objective was hematologic response rate and secondary objectives included CD34+ yields, incidence and severity of acute and chronic graft-versus-host disease (GVHD), overall survival (OS), and relapse-free survival (RFS). The median post-selection CD34+ counts per kilogram of recipient weight were 3.1 × 106, 10.9 × 106, and 1 × 106 for G-CSF only, G-CSF plus plerixafor, and cryopreserved products, respectively. The median CD34+ yields (defined as the number of CD34+ cells after selection/CD34+ cells before CD34+ selection) were 69%, 66%, and 28% for G-CSF only, G-CSF plus plerixafor, and cryopreserved products, respectively. After SCB, 16 of the 26 recipients (62%) had a complete response, including 5 of 8 (63%) who received cryopreserved products. Five had a partial response (19%), resulting in an overall response rate of 81%. One-year RFS and OS were 50% and 65%, respectively. There was no treatment-related toxicity reported other than GVHD: 6 (23%) developed acute GVHD (2 grade I and 4 grade II) and 8 (31%) developed chronic GVHD (2 limited and 6 extensive). Cryopreserved products are viable alternatives to create SCB for the treatment of PGF. When collecting fresh products is an option, the addition of plerixafor increases CD34+ yield over G-CSF alone; however, it is currently unclear if the CD34+ cell dose impacts the efficacy of the SCB.
Project description:We explore the status of quiescence, stemness and adipogenic differentiation capacity in adipose stem/progenitor cells (ASCs) ex vivo, immediately after isolation from human subcutaneous white adipose tissue, by sorting the stromal vascular fraction into cell-surface DLK1+/CD34-, DLK1+/CD34dim and DLK1-/CD34+ cells. We demonstrate that DLK1-/CD34+ cells, the only population exhibiting proliferative and adipogenic capacity, express ex vivo the bonafide quiescence markers p21Cip1, p27Kip1 and p57Kip2 but neither proliferation markers nor the senescence marker p16Ink4a. The pluripotency markers NANOG, SOX2 and OCT4 are barely detectable in ex vivo ASCs while the somatic stemness factors, c-MYC and KLF4 and the early adipogenic factor C/EBPβ are highly expressed. Further sorting of ASCs into DLK1-/CD34+/CD24- and DLK1-/CD34+/CD24+ fractions shows that KLF4 and c-MYC are higher expressed in DLK1-/CD34+/CD24+ cells correlating with higher colony formation capacity and considerably lower adipogenic activity. Proliferation capacity is similar in both populations. Next, we show that ASCs routinely isolated by plastic-adherence are DLK1-/CD34+/CD24+. Intriguingly, CD24 knock-down in these cells reduces proliferation and adipogenesis. In conclusion, DLK1-/CD34+ ASCs in human sWAT exist in a quiescent state, express high levels of somatic stemness factors and the early adipogenic transcription factor C/EBPβ but senescence and pluripotency markers are barely detectable. Moreover, our data indicate that CD24 is necessary for adequate ASC proliferation and adipogenesis and that stemness is higher and adipogenic capacity lower in DLK1-/CD34+/CD24+ relative to DLK1-/CD34+/CD24- subpopulations.
Project description:Hemogenic endothelium (HE) plays a pivotal and inevitable role in haematopoiesis and can generate all blood and endothelial lineage cells in the aorta-gonad-mesonephros of mouse embryos. Whether definitive HE can prospectively isolate pure HE from human pluripotent stem cells that can spontaneously differentiate into heterogeneous cells remains unknown. Here, we identified and validated a CD34dim subpopulation with hemogenic potential. We also purified CD34 cells with a CXCR4- CD73- phenotype as a definitive HE population that generated haematopoietic stem cells and lymphocytes. The frequency of CXCR4- CD73- CD34dim was evidently increased by bone morphogenetic protein 4, and purified HE cells differentiated into haematopoietic cells with myeloid and T lymphoid lineages including Vδ2+ subset of γ/δ T cells. We developed a simple method to purify HE cells that were enriched in CD34dim cells. We uncovered an initial step in differentiating haematopoietic lineage cells that could be applied to basic and translational investigations into regenerative medicine.
Project description:Background/Objectives: We aimed to identify the molecular signatures of primitive CD34+ and CD34- hematopoietic stem/progenitor cell (HSC/HPC) subsets in cord blood and bone marrow samples. Methods: CD34+ and CD34- HSC/HPC subsets from cord blood and bone marrow were characterized using flow cytometry, real-time PCR, and proteomic analysis to evaluate their phenotypic and molecular profiles. Results: Our findings revealed a significantly higher percentage of Lin-CD34-CD38Low/- (-/-) cells than of Lin-CD34+CD38Low/- (+/-) cells in cord blood. Aldehyde dehydrogenase levels were significantly lower in (-/-) than in (+/-) cells. Clonogenic ability was lower in (-/-) than in (+/-) cells. However, CD34- cells exhibited potent megakaryocyte/erythrocyte differentiation ability. Importantly, the HSC/HPC subsets expressed pluripotency or stemness genes (SOX2, Nanog, and OCT4); however, OCT4 expression significantly increased in (-/-) compared with (+/-) cells. We identified 304 proteins in the HSC/HPC subsets-85.6% had similar expression patterns in the two subsets; only 14.4% were differentially expressed between (-/-) and (+/-) cells. This implies their comparability at the protein level. Certain proteins were implicated in cellular-development-, gene-expression-, and embryonic-development-related signaling networks. Conclusions: Distinct biological and functional characteristics were observed between (-/-) and (+/-) HSC/HPC subsets. Some of the identified proteins may be novel HSC/HPC subsets markers for clinical applications after validation.