Project description:Allele-specific (AS) assessment of chromatin has the potential to elucidate specific cis-regulatory mechanisms, which are predicted to underlie the majority of the known genetic associations to complex disease. However, development of chromatin landscapes at allelic resolution has been challenging since sites of variable signal strength require substantial read depths not commonly applied in sequencing based approaches. In this study, we addressed this by performing parallel analyses of input DNA and chromatin immunoprecipitates (ChIP) on high-density Illumina genotyping arrays. Allele-specificity for the histone modifications H3K4me1, H3K4me3, H3K27ac, H3K27me3, and H3K36me3 was assessed using ChIP samples generated from 14 lymphoblast and 6 fibroblast cell lines. AS-ChIP SNPs were combined into domains and validated using high-confidence ChIP-seq sites. We observed characteristic patterns of allelic-imbalance for each histone-modification around allele-specifically expressed transcripts. Notably, we found H3K4me1 to be significantly anti-correlated with allelic expression (AE) at transcription start sites, indicating H3K4me1 allelic imbalance as a marker of AE. We also found that allelic chromatin domains exhibit population and cell-type specificity as well as heritability within trios. Finally, we observed that a subset of allelic chromatin domains is regulated by DNase I-sensitive quantitative trait loci and that these domains are significantly enriched for genome-wide association studies hits, with autoimmune disease associated SNPs specifically enriched in lymphoblasts. This study provides the first genome-wide maps of allelic-imbalance for five histone marks. Our results provide new insights into the role of chromatin in cis-regulation and highlight the need for high-depth sequencing in ChIP-seq studies along with the need to improve allele-specificity of ChIP-enrichment.
Project description:Chromatin immunoprecipitation (ChIP) is a powerful method for analyzing the interaction of regulatory proteins with genomic loci, but has been difficult to apply to studies on early embryos due to the limiting amount of genomic material in these samples. Here, we present a comprehensive technique for performing ChIP on blastula and gastrula stage Xenopus embryos. We also describe methods for optimizing crosslinking and chromatin shearing, verifying antibody specificity, maximizing PCR sensitivity, and quantifying PCR results, allowing for the use of as few as 50 early blastula stage embryos (approximately 5x10(4) cells) per experimental condition. Finally, we demonstrate the predicted binding of endogenous beta-catenin to the nodal-related 6 promoter, binding of tagged Fast-1/FoxH1 to the goosecoid promoter, and binding of tagged Tcf3 to the siamois and nodal-related 6 promoters as examples of the potential application of ChIP to embryological investigations. Developmental Dynamics 238:1422-1432, 2009. (c) 2009 Wiley-Liss, Inc.
Project description:Two alleles of a gene can be transcribed independently or coordinatedly, which can lead to temporal expression heterogeneity with potentially distinct impacts on cell fate. Here, we profiled genome-wide allelic transcriptional burst kinetics during the reprogramming of MEF to induced pluripotent stem cells. We show that the degree of coordination of allelic bursting differs among genes, and alleles of many reprogramming-related genes burst in a highly coordinated fashion. Notably, we show that the chromatin accessibility of the two alleles of highly coordinated genes is similar, unlike the semi-coordinated or independent genes, suggesting the degree of coordination of allelic bursting is linked to allelic chromatin accessibility. Consistently, we show that many transcription factors have differential binding affinity between alleles of semi-coordinated or independent genes. We show that highly coordinated genes are enriched with chromatin accessibility regulators such as H3K4me3, H3K4me1, H3K36me3, H3K27ac, histone variant H3.3, and BRD4. Finally, we demonstrate that enhancer elements are highly enriched in highly coordinated genes. Our study demonstrates that epigenomic states contribute to coordinated allelic bursting to fine-tune gene expression during induced pluripotent stem cell reprogramming.
Project description:In mammals, chromatin organization undergoes drastic reprogramming after fertilization. However, the three-dimensional structure of chromatin and its reprogramming in preimplantation development remain poorly understood. Here, by developing a low-input Hi-C (genomewide chromosome conformation capture) approach, we examined the reprogramming of chromatin organization during early development in mice. We found that oocytes in metaphase II show homogeneous chromatin folding that lacks detectable topologically associating domains (TADs) and chromatin compartments. Strikingly, chromatin shows greatly diminished higher-order structure after fertilization. Unexpectedly, the subsequent establishment of chromatin organization is a prolonged process that extends through preimplantation development, as characterized by slow consolidation of TADs and segregation of chromatin compartments. The two sets of parental chromosomes are spatially separated from each other and display distinct compartmentalization in zygotes. Such allele separation and allelic compartmentalization can be found as late as the 8-cell stage. Finally, we show that chromatin compaction in preimplantation embryos can partially proceed in the absence of zygotic transcription and is a multi-level hierarchical process. Taken together, our data suggest that chromatin may exist in a markedly relaxed state after fertilization, followed by progressive maturation of higher-order chromatin architecture during early development.
Project description:BackgroundSuccessful reprogramming of a somatic genome to produce a healthy clone by somatic cells nuclear transfer (SCNT) is a rare event and the mechanisms involved in this process are poorly defined. When serial or successive rounds of cloning are performed, blastocyst and full term development rates decline even further with the increasing rounds of cloning. Identifying the "cumulative errors" could reveal the epigenetic reprogramming blocks in animal cloning.ResultsBovine clones from up to four generations of successive cloning were produced by chromatin transfer (CT). Using Affymetrix bovine microarrays we determined that the transcriptomes of blastocysts derived from the first and the fourth rounds of cloning (CT1 and CT4 respectively) have undergone an extensive reprogramming and were more similar to blastocysts derived from in vitro fertilization (IVF) than to the donor cells used for the first and the fourth rounds of chromatin transfer (DC1 and DC4 respectively). However a set of transcripts in the cloned embryos showed a misregulated pattern when compared to IVF embryos. Among the genes consistently upregulated in both CT groups compared to the IVF embryos were genes involved in regulation of cytoskeleton and cell shape. Among the genes consistently upregulated in IVF embryos compared to both CT groups were genes involved in chromatin remodelling and stress coping.ConclusionThe present study provides a data set that could contribute in our understanding of epigenetic errors in somatic cell chromatin transfer. Identifying "cumulative errors" after serial cloning could reveal some of the epigenetic reprogramming blocks shedding light on the reprogramming process, important for both basic and applied research.
Project description:Tumour-specific CD8 T cells in solid tumours are dysfunctional, allowing tumours to progress. The epigenetic regulation of T cell dysfunction and therapeutic reprogrammability (for example, to immune checkpoint blockade) is not well understood. Here we show that T cells in mouse tumours differentiate through two discrete chromatin states: a plastic dysfunctional state from which T cells can be rescued, and a fixed dysfunctional state in which the cells are resistant to reprogramming. We identified surface markers associated with each chromatin state that distinguished reprogrammable from non-reprogrammable PD1hi dysfunctional T cells within heterogeneous T cell populations from tumours in mice; these surface markers were also expressed on human PD1hi tumour-infiltrating CD8 T cells. Our study has important implications for cancer immunotherapy as we define key transcription factors and epigenetic programs underlying T cell dysfunction and surface markers that predict therapeutic reprogrammability.
Project description:BackgroundMulticellular organisms require precise gene regulation during ontogeny, and epigenetic modifications, such as DNA methylation and histone modification, facilitate this precise regulation. The conservative reprogramming patterns of DNA methylation in vertebrates have been well described. However, knowledge of how histone modifications are passed on from gametes to early embryos is limited, and whether histone modification reprogramming is conserved is not clear.ResultsWe profiled H3K4me3/H3K27me3 modifications in gametes and early embryos in zebrafish and found that the patterns in gene promoter regions have been largely set to either co-occupied or active states in gametes and then passed on to early embryos. Co-occupied states are partially maintained, while active states are largely restored to nearly match the sperm's pattern prior to zygotic genome activation (ZGA). However, repressive H3K27me3 modifications in promoter regions are largely discarded in early embryos. Prior to ZGA, patterns of genes that initialize ZGA are converted to nonrepressive states to coordinate gene expression. Moreover, promoter peaks that mark stage-specific genes are hypermethylated, and histone modifications in these regions are erased independently of DNA methylation reprogramming. Furthermore, comparative analysis revealed that the functions of co-occupied and active genes passed on from gametes are conserved in vertebrates. Gene age preferences by co-occupied and active histone modifications are also confirmed in vertebrates.ConclusionsOur data provide fundamental resources for understanding H3K4me3/H3K27me3 modifications in early zebrafish embryos. The data also reveal that the reprogramming progress of histone modifications is conserved in vertebrates and coordinates with gene expression during ZGA.
Project description:Chromatin reorganization governs the regulation of gene expression during preimplantation development. However, the landscape of chromatin dynamics in this period has not been explored in bovine. In this study, we constructed a genome-wide map of accessible chromatin in bovine oocytes and early embryos using an improved assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) which revealed unique features of the accessible chromatin during bovine early embryo development. We found that chromatin accessibility is low in oocytes and 2-/4-cell embryos, followed by a significant increase in embryos during major embryonic genome activation (EGA), and peaked in elongating day 14 embryos. Genome-wide characteristics of open chromatin showed that ATAC-seq signals in both transcription start sites (TSS) and transcription end sites (TES) were strong. Additionally, the distal ATAC-seq peaks were enriched in repeat elements in a type-specific and stage-specific manner. We further unveiled a series of transcription factor (TF) motifs with distinct variation of enrichment from distal ATAC-seq peaks. By integrated analysis of chromatin accessibility with transcriptomes and DNA methylomes in bovine early embryos, we showed that promoter accessibility was positively correlated with gene expression, especially during major EGA, and was strongly correlated to DNA methylation and CpG density. Finally, we identified the critical chromatin signatures and TFs that differ between in vivo and in vitro derived blastocysts, which provides insights to the potential mechanisms leading to low quality of embryos produced in vitro. Together, this comprehensive analysis revealed critical features of chromatin landscape and epigenetic reprogramming during bovine preimplantation embryo development.
Project description:Somatic cell reprogramming (SCR) is the conversion of differentiated somatic cells into totipotent or pluripotent cells through a variety of methods. Somatic cell reprogramming also provides a platform to investigate the role of chromatin-based factors in establishing and maintaining totipotency or pluripotency, since high expression of totipotency- or pluripotency-related genes usually require an active chromatin state. Several studies in plants or mammals have recently shed light on the molecular mechanisms by which epigenetic modifications regulate the expression of totipotency or pluripotency genes by altering their chromatin states. In this review, we present a comprehensive overview of the dynamic changes in epigenetic modifications and chromatin states during reprogramming from somatic cells to totipotent or pluripotent cells. In addition, we illustrate the potential role of DNA methylation, histone modifications, histone variants, and chromatin remodeling during somatic cell reprogramming, which will pave the way to developing reliable strategies for efficient cellular reprogramming.
Project description:Chromatin remodeling plays a critical role in gene regulation and impacts many biological processes. However, little is known about the relationship between chromatin remodeling dynamics and in vivo cell lineage commitment. Here, we reveal the patterns of histone modification change and nucleosome positioning dynamics and their epigenetic regulatory roles during the in vivo glial differentiation in early Drosophila embryos. The genome-wide average H3K9ac signals in promoter regions are decreased in the glial cells compared to the neural progenitor cells. However, H3K9ac signals are increased in a group of genes that are up-regulated in glial cells and involved in gliogenesis. There occurs extensive nucleosome remodeling including shift, loss, and gain. Nucleosome depletion regions (NDRs) form in both promoters and enhancers. As a result, the associated genes are up-regulated. Intriguingly, NDRs form in two fashions: nucleosome shift and eviction. Moreover, the mode of NDR formation is independent of the original chromatin state of enhancers in the neural progenitor cells.