Project description:Access to new non-canonical amino acid residues is crucial for medicinal chemistry and chemical biology. Analogues of the amino acid methionine have been far less explored-despite their use in biochemistry, pharmacology and peptide bioconjugation. This is largely due to limited synthetic access. Herein, we exploit a new disconnection to access non-natural methionines through the development of a photochemical method for the radical α-C-H functionalization of sulfides with alkenes, in water, using inexpensive and commercially-available riboflavin (vitamin B2 ) as a photocatalyst. Our photochemical conditions allow the two-step synthesis of novel methionine analogues-by radical addition to unsaturated amino acid derivatives-and the chemoselective modification of peptide side-chains to yield non-natural methionine residues within small peptides. The mechanism of the bio-inspired flavin photocatalysis has been probed by experimental, DFT and TDDFT studies.
Project description:Plastics take hundreds of years to degrade naturally, while their chemical degradation typically requires high temperature and pressure. Here, we first utilize solar energy to realize the sustainable and efficient plastic-to-syngas conversion with the aid of water at ambient conditions. As an example, the commercial plastic bags could be efficiently photoconverted into renewable syngas by Co-Ga2O3 nanosheets, with hydrogen and carbon monoxide formation rates of 647.8 and 158.3 μmol g-1 h-1. In situ characterizations and labelling experiments unveil water is photoreduced into hydrogen, while non-recyclable plastics including polyethylene bags, polypropylene boxes and polyethylene terephthalate bottles are photodegraded into carbon dioxide, which is further selectively photoreduced into carbon monoxide. In-depth investigation illustrates that the efficiency of syngas production mainly depends on the carbon dioxide reduction process and hence photocatalysts of high carbon dioxide reduction activity should be designed to promote the efficiency of plastic-to-syngas conversion in the future. The concept for the photoreforming of non-recyclable plastics into renewable syngas helps to eradicate 'white pollution' and alleviate the energy crisis simultaneously.
Project description:Two novel 23-fluorinated 25-hydroxyvitamin D3 analogues were synthesized using Inhoffen-Lythgoe diol as a precursor of the CD-ring, efficiently. Introduction of the C23 fluoro group was achieved by the deoxy-fluorination reaction using N,N-diethylaminosulfur trifluoride or 2-pyridinesulfonyl fluoride (PyFluor). Kinetic studies on the CYP24A1-dependent metabolism of these two analogues revealed that (23S)-23-fluoro-25-hydroxyvitamin D3 was more resistant to CYP24A1-dependent metabolism than its 23R isomer.
Project description:Only a small fraction of vitamin B12-requiring organisms are able to synthesize B12 de novo, making it a common commodity in microbial communities. Initially recognized as an enzyme cofactor of a few enzymes, recent studies have revealed additional B12-binding enzymes and regulatory roles for B12 Here we report the development and use of a B12-based chemical probe to identify B12-binding proteins in a nonphototrophic B12-producing bacterium. Two unexpected discoveries resulted from this study. First, we identified a light-sensing B12-binding transcriptional regulator and demonstrated that it controls folate and ubiquinone biosynthesis. Second, our probe captured proteins involved in folate, methionine, and ubiquinone metabolism, suggesting that it may play a role as an allosteric effector of these processes. These metabolic processes produce precursors for synthesis of DNA, RNA, and protein. Thereby, B12 likely modulates growth, and by limiting its availability to auxotrophs, B12-producing organisms may facilitate coordination of community metabolism.
Project description:Alzheimer's disease (AD) is a devastating neurodegenerative disorder with no effective treatment. Diet, as a modifiable risk factor for AD, could potentially be targeted to slow disease onset and progression. However, complexity of the human diet and indirect effects of the microbiome make it challenging to identify protective nutrients. Multiple factors contribute to AD pathogenesis, including amyloid beta (Aβ) deposition, energy crisis, and oxidative stress. Here, we use Caenorhabditis elegans to define the impact of diet on Aβ proteotoxicity. We discover that dietary vitamin B12 alleviates mitochondrial fragmentation, bioenergetic defects, and oxidative stress, delaying Aβ-induced paralysis without affecting Aβ accumulation. Vitamin B12 has this protective effect by acting as a cofactor for methionine synthase, impacting the methionine/S-adenosylmethionine (SAMe) cycle. Vitamin B12 supplementation of B12-deficient adult Aβ animals is beneficial, demonstrating potential for vitamin B12 as a therapy to target pathogenic features of AD triggered by proteotoxic stress.
Project description:Dinoflagellates are responsible for most marine harmful algal blooms (HABs) and play vital roles in many ocean processes. More than 90% of dinoflagellates are vitamin B12 auxotrophs and that B12 availability can control dinoflagellate HABs, yet the genetic basis of B12 auxotrophy in dinoflagellates in the framework of the ecology of dinoflagellates and particularly HABs, which was the objective of this work. Here, we investigated the presence, phylogeny, and transcription of two methionine synthase genes (B12-dependent metH and B12-independent metE) via searching and assembling transcripts and genes from transcriptomic and genomic databases, cloning 38 cDNA isoforms of the two genes from 14 strains of dinoflagellates, measuring the expression at different scenarios of B12, and comprehensive phylogenetic analyses of more than 100 organisms. We found that 1) metH was present in all 58 dinoflagellates accessible and metE was present in 40 of 58 species, 2) all metE genes lacked N-terminal domains, 3) metE of dinoflagellates were phylogenetically distinct from other known metE genes, and 4) expression of metH in dinoflagellates was responsive to exogenous B12 levels while expression of metE was not responding as that of genuine metE genes. We conclude that most, hypothetically all, dinoflagellates have either non-functional metE genes lacking N-terminal domain for most species, or do not possess metE for other species, which provides the genetic basis for the widespread nature of B12 auxotrophy in dinoflagellates. The work elucidated a fundamental aspect of the nutritional ecology of dinoflagellates.
Project description:Methionine adenosyltransferases (MATs) catalyze the formation of S-adenosyl-l-methionine (SAM) inside living cells. Recently, S-alkyl analogues of SAM have been documented as cofactor surrogates to label novel targets of methyltransferases. However, these chemically synthesized SAM analogues are not suitable for cell-based studies because of their poor membrane permeability. This issue was recently addressed under a cellular setting through a chemoenzymatic strategy to process membrane-permeable S-alkyl analogues of methionine (SAAMs) into the SAM analogues with engineered MATs. Here we describe a general sensitive activity assay for engineered MATs by converting the reaction products into S-alkylthioadenosines, followed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) quantification. With this assay, 40 human MAT mutants were evaluated against 7 SAAMs as potential substrates. The structure-activity relationship revealed that, besides better engaged SAAM binding by the MAT mutants (lower Km value in contrast to native MATs), the gained activity toward the bulky SAAMs stems from their ability to maintain the desired linear SN2 transition state (reflected by higher kcat value). Here the I117A mutant of human MATI was identified as the most active variant for biochemical production of SAM analogues from diverse SAAMs.
Project description:Memory-epigenetics which is the loss of memory due to epigenetic modifications can be due to the silencing of genes involved in cognitive functions and this is the basis of the current study. We hypothesize that a diet containing high methionine and low vitamins can lead to memory impairment by increasing global DNA methylation and therefore, silencing the netrin-1 gene, which encodes the glycoprotein involved in neurogenesis, axonal guidance and maintenance of the synaptic plasticity. Wild type (C57BL/6J) mice were fed with a diet containing excess methionine (1.2%), low-folate (0.08 mg/kg), vitamin B6 (0.01 mg/kg), and B12 (10.4 mg/kg) for 6 weeks. Mice were examined weekly for the long-term memory function, using a passive avoidance test, which determined loss of fear-motivated long-term memory starting from the fourth week of diet. Similarly, an increase in brain %5-methyl cytosine was observed starting from the 4th week of diet in mice. Mice fed with a high methionine, low folate and vitamins containing diet showed a decrease in netrin-1 protein expression and an increase in netrin-1 gene promotor methylation, as determined by methylation-sensitive restriction enzyme-polymerase chain reaction analysis. The increase in methylation of netrin-1 gene was validated by high-resolution melting and sequencing analysis. Furthermore, the association of netrin-1 with memory was established by administering netrin that considerably restored long-term fear motivated memory. Taken together, these results suggest that a diet rich in methionine and lacking in folate and vitamin B6/B12 can induce defects in learning and memory. Furthermore, the data indicates that decrease in netrin-1 expression due to hyper-methylation of its gene can be associated with memory loss. The animal procedures were approved by the Institutional Animal Care and Use Committee, University of Louisville, USA (No. A3586-01) on February 2, 2018.
Project description:BackgroundNutrients involved in one-carbon metabolism may play a key role in pancreatic carcinogenesis. The aim of this study was to examine the association between pancreatic cancer risk and intake or blood levels of vitamins B6, B12 and methionine via meta-analysis.MethodsA systematic search was performed in PubMed, Web of Knowledge and Chinese National Knowledge Infrastructure (CNKI) up to April 2020 to identify relevant studies. Risk estimates and their 95% confidence intervals (CIs) were retrieved from the studies and combined by a random-effect model.ResultsA total of 18 studies were included in this meta-analysis on the association of vitamin B6, B12 and methionine with pancreatic cancer risk. The combined risk estimate (95% CI) of pancreatic cancer for the highest vs lowest category of vitamin B6 intake and blood pyridoxal 5'-phosphate (PLP, active form of vitamin B6) levels was 0.63 (0.48-0.79) and 0.65 (0.52-0.79), respectively. The results indicated a non-linear dose-response relationship between vitamin B6 intake and pancreatic risk. Linear dose-response relationship was found, and the risk of pancreatic cancer decreased by 9% for every 10 nmol/L increment in blood PLP levels. No significant association were found between pancreatic cancer risk and vitamin B12 intake, blood vitamin B12 levels, methionine intake and blood methionine levels.ConclusionOur study suggests that high intake of vitamin B6 and high concentration of blood PLP levels may be protective against the development of pancreatic cancer. Further research are warranted to confirm the results.