Project description:In order to investigate the specific mechanism of maltose on the production of recombinant type III collagen by Komagataella phaffii GS115, Two groups were set up, control group C using BMMY medium and experimental group M using BMMY + 1% maltose.
Project description:Human CD81 (hCD81) protein has been recombinantly produced in the methylotrophic yeast Pichia pastoris. The purified protein, produced at a yield of 1.75 mg/L of culture, was shown to interact with Hepatitis C virus E2 glycoprotein. Immunofluorescent and flow cytometric staining of P. pastoris protoplasts with monoclonal antibodies specific for the second extracellular loop (EC2) of hCD81 confirmed the antigenicity of the recombinant molecule. Full-length hCD81 was solubilized with an array of detergents and subsequently characterized using circular dichroism (CD) and analytical ultracentrifugation. These biophysical techniques confirmed that the protein solution comprises a homogenous species possessing a highly-defined alpha-helical secondary structure. The predicted alpha-helical content of the protein from CD analysis (77.1%) fits remarkably well with what would be expected (75.2%) from knowledge of the protein sequence together with the data from the crystal structure of the second extracellular loop. This study represents the first biophysical characterization of a full-length recombinant tetraspanin, and opens the way for structure-activity analyses of this ubiquitous family of transmembrane proteins.
Project description:The human secretory leukocyte protease inhibitor (SLPI) has been shown to possess anti-protease, anti-inflammatory and antimicrobial properties. Its presence in saliva is believed to be a major deterrent to oral transmission of human immunodeficiency virus-1. The 11.7kDa peptide is a secreted, nonglycosylated protein rich in disulfide bonds. Currently, recombinant SLPI is only available as an expensive bacterial expression product. We have investigated the utility of the methylotrophic yeast Pichia pastoris to produce and secrete SLPI with C-terminal c-myc and polyhistidine tags. The post-transformational vector amplification protocol was used to isolate strains with increased copy number, and culturing parameters were varied to optimize SLPI expression. Modification of the purification procedure allowed the secreted, recombinant protein to be isolated from the cell-free fermentation medium with cobalt affinity chromatography. This yeast-derived SLPI was shown to have an anti-protease activity comparable to the commercially available bacterial product. Thus, P. pastoris provides an efficient, cost-effective system for producing SLPI for structure function analysis studies as well as a wide array of potential therapeutic applications.
Project description:The development of commercial collagen inks for extrusion-based bioprinting has increased the amount of research on pure collagen bioprinting, i.e., collagen inks not mixed with gelatin, alginate, or other more common biomaterial inks. New printing techniques have also improved the resolution achievable with pure collagen bioprinting. However, the resultant collagen constructs still appear too weak to replicate dense collagenous tissues, such as the cornea. This work aims to demonstrate the first reported case of bioprinted recombinant collagen films with suitable optical and mechanical properties for corneal tissue engineering. The printing technology used, aerosol jet® printing (AJP), is a high-resolution printing method normally used to deposit conductive inks for electronic printing. In this work, AJP was employed to deposit recombinant human collagen type III (RHCIII) in overlapping continuous lines of 60 µm to form thin layers. Layers were repeated up to 764 times to result in a construct that was considered a few hundred microns thick when swollen. Samples were subsequently neutralised and crosslinked using EDC:NHS crosslinking. Nanoindentation and absorbance measurements were conducted, and the results show that the AJP-deposited RHCIII samples possess suitable mechanical and optical properties for corneal tissue engineering: an average effective elastic modulus of 506 ± 173 kPa and transparency ≥87% at all visible wavelengths. Circular dichroism showed that there was some loss of helicity of the collagen due to aerosolisation. SDS-PAGE and pepsin digestion were used to show that while some collagen is degraded due to aerosolisation, it remains an inaccessible substrate for pepsin cleavage.
Project description:B-cell maturation antigen (BCMA) fused at the C-terminus to the Fc portion of human IgG1 (BCMA-Fc) blocks B-cell activating factor (BAFF) and proliferation-inducing ligand (APRIL)-mediated B-cell activation, leading to immune disorders. The fusion protein has been cloned and produced by several engineering cell lines. To reduce cost and enhance production, we attempted to express recombinant human BCMA-Fc (rhBCMA-Fc) in Pichia pastoris under the control of the AOX1 methanol-inducible promoter. To produce the target protein with uniform molecular weight and reduced immunogenicity, we mutated two predicted N-linked glycosylation sites. The secretory yield was improved by codon optimization of the target gene sequence. After fed-batch fermentation under optimized conditions, the highest yield (207 mg/L) of rhBCMA-Fc was obtained with high productivity (3.45 mg/L/h). The purified functional rhBCMA-Fc possessed high-binding affinity to APRIL and dose-dependent inhibition of APRIL-induced proliferative activity in vitro through three-step purification. Thus, this yeast-derived expression method could be a low-cost and effective alternative to the production of rhBCMA-Fc in mammalian cell lines.
Project description:Human C-reactive protein (CRP), a classical human acute-phase plasma protein, is not only a sensitive systemic inflammatory marker but also an independent risk predictor of cardiovascular diseases. However, existing heterologous expression systems for expressing CRP is not efficient and cost-effective for large-scale industrial production of CRP to meet the growing market demand for CRP. This study aims to improve the secretion of recombinant CRP by Pichia pastoris via optimizing signal peptides, promoters and carbon sources. The CRP genes with encoding four different signal peptides were designed and synthesized. The genes were cloned into pPICZαA or pPICZ B, respectively via splicing by overlap extension polymerase chain reaction (SOE-PCR) technology and expressed in P. pastoris X-33, regulated by the alcohol oxidase I promoter (pAOX1). The CRP led by the α-mating factor secretion signal peptide (α-MF) was secreted at the highest level in these signal peptides. Then, a constitutive construct and expression of the CRP genes were achieved by switching to the glyceraldehyde-3-phosphate dehydrogenase promoter (pGAP). Subsequently, different carbon sources and at different concentrations were used to further improve the secretion of CRP. The expression of CRP with the α-MF driven by the pGAP gave the highest yield of secreted CRP, about 3 mg/l of culture on the optimized culture conditions. The purified recombinant CRP exhibited good immunoreactivity determined by ELISA with anti-human CRP monoclonal antibody. The efficient engineering strategy established in this work might provide potential uses in large-scale industrial production of human CRP in the future.
Project description:BACKGROUND:Therapeutic glycoproteins have occupied an extremely important position in the market of biopharmaceuticals. N-Glycosylation of protein drugs facilitates them to maintain optimal conformations and affect their structural stabilities, serum half-lives and biological efficiencies. Thus homogeneous N-glycoproteins with defined N-glycans are essential in their application in clinic therapeutics. However, there still remain several obstacles to acquire homogeneous N-glycans, such as the high production costs induced by the universal utilization of mammalian cell expression systems, the non-humanized N-glycan structures and the N-glycosylation microheterogeneities between batches. RESULTS:In this study, we constructed a Pichia pastoris (Komagataella phaffii) expression system producing truncated N-GlcNAc-modified recombinant proteins through introducing an ENGase isoform (Endo-T) which possesses powerful hydrolytic activities towards high-mannose type N-glycans. The results showed that the location of Endo-T in different subcellular fractions, such as Endoplasmic reticulum (ER), Golgi or cell membrane, affected their hydrolytic efficiencies. When the Endo-T was expressed in Golgi, the secreted IgG1-Fc region was efficiently produced with almost completely truncated N-glycans and the N-GlcNAc modification on the glycosite Asn297 was confirmed via Mass Spectrometry. CONCLUSION:This strategy develops a simple glycoengineered yeast expression system to produce N-GlcNAc modified proteins, which could be further extended to different N-glycan structures. This system would provide a prospective platform for mass production of increasing novel glycoprotein drugs.
Project description:Geobacillus stearothermophilus SR74 is a locally isolated thermophilic bacteria producing thermostable and thermoactive α-amylase. Increased production and commercialization of thermostable α-amylase strongly warrant the need of a suitable expression system. In this study, the gene encoding the thermostable α-amylase in G. stearothermophilus SR74 was amplified, sequenced, and subcloned into P. pastoris GS115 strain under the control of a methanol inducible promoter, alcohol oxidase (AOX). Methanol induced recombinant expression and secretion of the protein resulted in high levels of extracellular amylase production. YPTM medium supplemented with methanol (1% v/v) was the best medium and once optimized, the maximum recombinant α-amylase SR74 achieved in shake flask was 28.6 U mL(-1) at 120 h after induction. The recombinant 59 kDa α-amylase SR74 was purified 1.9-fold using affinity chromatography with a product yield of 52.6% and a specific activity of 151.8 U mg(-1). The optimum pH of α-amylase SR74 was 7.0 and the enzyme was stable between pH 6.0-8.0. The purified enzyme was thermostable and thermoactive, exhibiting maximum activity at 65°C with a half-life (t₁/₂) of 88 min at 60°C. In conclusion, thermostable α-amylase SR74 from G. stearothermophilus SR74 would be beneficial for industrial applications, especially in liquefying saccrification.
Project description:The effect of the deletion of a 57 bp native signal sequence, which transports the nascent protein through the endoplasmic reticulum membrane in plants, on improved AtTGG1 plant myrosinase production in Pichia pastoris was studied. Myrosinase was extracellularly produced in a 3-liter laboratory fermenter using α-mating factor as the secretion signal. After the deletion of the native signal sequence, both the specific productivity (164.8 U/L/h) and volumetric activity (27 U/mL) increased more than 40-fold compared to the expression of myrosinase containing its native signal sequence in combination with α-mating factor. The deletion of the native signal sequence resulted in slight changes in myrosinase properties: the optimum pH shifted from 6.5 to 7.0 and the maximal activating concentration of ascorbic acid increased from 1 mM to 1.5 mM. Kinetic parameters toward sinigrin were determined: 0.249 mM (Km) and 435.7 U/mg (Vmax). These results could be applied to the expression of other plant enzymes.
Project description:Myrosinase is a plant defence enzyme catalysing the hydrolysis of glucosinolates, a group of plant secondary metabolites, to a range of volatile compounds. One of the products, isothiocyanates, proved to have neuroprotective and chemo-preventive properties, making myrosinase a pharmaceutically interesting enzyme. In this work, extracellular expression of TGG1 myrosinase from Arabidopsis thaliana in the Pichia pastoris KM71H (MutS) strain was upscaled to a 3 L laboratory fermenter for the first time. Fermentation conditions (temperature and pH) were optimised, which resulted in a threefold increase in myrosinase productivity compared to unoptimised fermentation conditions. Dry cell weight increased 1.5-fold, reaching 100.5 g/L without additional glycerol feeding. Overall, a specific productivity of 4.1 U/Lmedium/h was achieved, which was 102.5-fold higher compared to flask cultivations.