Project description:Background/aimThe soluble interleukin-2 receptor (sIL-2R) serve as a valuable biomarker for tumors in human patients, as its levels increase during the activation of T lymphocytes in clinical states such as inflammation, infection, and tumor. This study aimed to demonstrate that sIL-2R levels can be also elevated in dogs with tumors and evaluate its applicability as a diagnostic and prognostic factor in canine cancer patients.Patients and methodsSerum was collected from 6 healthy dogs and 34 dogs with solid tumors. The concentration of sIL-2R was measured using a commercial enzyme-linked immunosorbent assay kit.ResultsThe median sIL-2R concentration was significantly higher in dogs with solid masses than in healthy dogs (117.3 vs 68.33 pg/ml, p = 0.016). The highest median sIL-2R concentration was found in dogs with malignant tumors, followed by those with benign tumors, and healthy dogs (119.6 vs 93.74 vs 68.33 pg/ml, respectively). In dogs with malignant tumors, the mortality rate was significantly higher in the group with high sIL-2R levels than in the group with low sIL-2R levels. Dogs with solid tumors, particularly those with malignant tumors, had higher concentrations of sIL-2R than healthy dogs. Among dogs with malignant tumors, a correlation between sIL-2R concentration and mortality rate was confirmed.ConclusionSerum sIL-2R levels may be used to detect malignant tumors and serve as a prognostic factor in dogs with malignant tumors.
Project description:BackgroundCOVID-19 is a worldwide pandemic that is mild in most patients but can result in a pneumonia like illness with progression to acute respiratory distress syndrome and death. Predicting the disease severity at time of diagnosis can be helpful in prioritizing hospital admission and resources.MethodsWe prospectively recruited 1096 consecutive patients of whom 643 met the inclusion criterion with COVID-19 from Jaber Hospital, a COVID-19 facility in Kuwait, between 24 February and 20 April 2020. The primary endpoint of interest was disease severity defined algorithmically. Predefined risk variables were collected at the time of PCR based diagnosis of the infection. Prognostic model development used 5-fold cross-validated regularized logit regression. The model was externally validated against data from Wuhan, China.ResultsThere were 643 patients with clinical course data of whom 94 developed severe COVID-19. In the final model, age, CRP, procalcitonin, lymphocyte percentage, monocyte percentages and serum albumin were independent predictors of a more severe illness course. The final prognostic model demonstrated good discrimination, and both discrimination and calibration were confirmed with an external dataset.ConclusionWe developed and validated a simple score calculated at time of diagnosis that can predict patients with severe COVID-19 disease reliably and that has been validated externally. The KPI score calculator is now available online at covidkscore.com.
Project description:PurposeSARS-CoV-2 (COVID-19) has infected more than 7 million people worldwide in the short time since it emerged in Wuhan, China in December 2019. The aim of this study was to investigate the relationship between serum interleukin 6 (IL-6) and surfactant protein D (SP-D) levels and the clinical course and prognosis of COVID-19.Materials and methodsThe study included a total of 108 individuals: 88 patients who were diagnosed with COVID-19 by real-time PCR of nasopharyngeal swab samples and admitted to the Atatürk University Pulmonary Diseases and the Erzurum City Hospital Infectious Diseases department between March 24 and April 15, and 20 asymptomatic healthcare workers who had negative real-time PCR results during routine COVID-19 screening in our hospital.ResultsPatients who developed macrophage activation syndrome had significantly higher IL-6 and SP-D levels at the time of admission and on day 5 of treatment compared to the other patients (IL-6: p = 0.001 for both; SP-D: p = 0.02, p = 0.04). Patients who developed acute respiratory distress syndrome had significantly higher IL-6 and SP-D levels at both time points compared to those who did not (p = 0.001 for all). Both parameters at the time of admission were also significantly higher among nonsurvivors compared to survivors (IL-6: p = 0.001, SP-D: p = 0.03).ConclusionIn addition to IL-6, which has an important role in predicting course and planning treatment in COVID-19, SP-D may be a novel pneumoprotein that can be used in the clinical course, follow-up, and possibly in future treatments.
Project description:BackgroundCoronavirus disease-2019 (COVID-19) is associated with a high risk of acute kidney injury (AKI), often requiring renal replacement therapy (RRT). Serum Cystatin C (sCysC) and serum Neutrophil Gelatinase-Associated Lipocalin (sNGAL) are emerging biomarkers for kidney injury, and were suggested to be superior to serum creatinine (sCr) in several clinical settings. Moreover, elevated sCysC is associated with disease severity and mortality in COVID-19. We aimed to assess the utility of sCysC and sNGAL for predicting COVID-19-associated AKI, need for RRT, and need for intensive care unit (ICU) admission, when measured at presentation to the emergency department (ED).MethodsPatients presenting to the ED with laboratory-confirmed COVID-19 were included. The primary outcome was development of COVID-19-associated AKI, while the secondary outcomes were need for RRT and ICU admission.ResultsAmong 52 COVID-19 patients, 22 (42.3%) developed AKI with 8/22 (36.4%) requiring RRT. Both sCr and sCysC demonstrated excellent performance for predicting AKI (AUC, 0.86 and 0.87, respectively) and need for RRT (AUC, 0.94 and 0.95, respectively). sNGAL displayed acceptable performance for predicting AKI (AUC, 0.81) and need for RRT (AUC, 0.87).ConclusionsSCr and sCysC measured at ED presentation are both highly accurate predictors of AKI and need for RRT, whereas sNGAL demonstrated adequate diagnostic performance. While sCyC was previously shown to be superior to sCr as a diagnostic biomarker of kidney injury in certain etiologies, our findings demonstrate that sCr is comparable to sCyC in the context of predicting COVID-19-associated AKI. Given the high sensitivity of these biomarkers for predicting the need for RRT, and as sCysC is associated with mortality in COVID-19 patients, we recommend their measurement for enabling risk stratification and early intervention.
Project description:BackgroundInterleukin-6 (IL-6), a proinflammatory cytokine, has been reported to be associated with disease severity and mortality in patients with coronavirus disease 2019 (COVID-19). Yet, dynamic changes in IL-6 levels and their prognostic value as an indicator of lung injury in COVID-19 patients have not been fully elucidated.ObjectiveTo validate whether IL-6 levels are associated with disease severity and mortality and to investigate whether dynamic changes in IL-6 levels might be a predictive factor for lung injury in COVID-19 patients.MethodsThis retrospective, single-center study included 728 adult COVID-19 patients and used data extracted from electronic medical records for analyses.ResultsThe mortality rate was higher in the elevated IL-6 group than in the normal IL-6 group (0.16 vs 5%). Cox proportional hazards and logistic regression analyses for survival (adjusted hazard ratio, 10.39; 95% confidence interval [CI], 1.09-99.23; p = 0.042) and disease severity (adjusted odds ratio, 3.56; 95% CI, 2.06-6.19; p < 0.001) revealed similar trends. Curve-fitting analyses indicated that patient computed tomography (CT) scores peaked on days 22 and 24. An initial decline in IL-6 levels on day 16 was followed by resurgence to a peak, nearly in tandem with the CT scores.ConclusionIncreased IL-6 level may be an independent risk factor for disease severity and in-hospital mortality and dynamic IL-6 changes may serve as a potential predictor for lung injury in Chinese COVID-19 patients. These findings may guide future treatment of COVID-19 patients.
Project description:BackgroundCoronavirus Disease 19 (COVID-19) is a global health concern that has become a pandemic over the past few months. This study aims at understanding the clinical manifestations of COVID-19 patients with pleural effusion.MethodsCOVID-19 patients were retrospectively enrolled from the Union Hospital, Tongji Medical College, Huazhong University of Science and Technology. Pharyngeal swabs from patients were tested using real-time polymerase chain reaction. Patients with COVID-19 were divided into two groups based on their computed tomography (CT) scans for the presence of pleural effusion at admission. We compared the clinical features, laboratory findings, scans and clinical outcomes between the two groups.ResultsPleural effusion was observed in 9.19% of the patients. Patients with pleural effusion were more likely to be severe or critical cases. Moreover, patients with pleural effusion were associated with increased mortality. Of the 799 discharged patients, patients with pleural effusion had longer hospital stays and duration of viral shedding since the onset of symptoms as compared with that for patients without pleural effusion. After discharge, 217 patients visited for a follow-up CT re-examination at the Union Hospital. The CT scans showed that patients with pleural effusion required a longer time to resolve the lung inflammation after the onset of COVID-19 as compared with the time required by patients without pleural effusion.ConclusionThis population of patients requires special attention and pleural effusion may be an indicator of poor prognosis in COVID-19 patients.
Project description:BackgroundInterleukin (IL)-1β is a proinflammatory cytokine that has a role in disease-related inflammation, including malaria. However, reports on the effect of IL-1β on malaria severity are inconsistent. Therefore, meta-analyses to compare differences in IL-1β levels between patients with severe malaria, patients with uncomplicated malaria and healthy controls were performed.MethodsThe PRISMA standards were used to perform a systematic review and meta-analysis. A search of PubMed, Scopus, EMBASE and reference lists was conducted for articles providing data on IL-1β levels between patients with severe malaria, patients with uncomplicated malaria and healthy controls between January 1988 and March 2022, using a combination of search terms. The quality of all studies included in this review was determined using the Strengthening the Reporting of Observational Studies in Epidemiology statement: guidelines for reporting observational studies. The evidence was synthesized quantitatively and qualitatively. The differences in IL-1 levels across participant groups were recounted narratively for qualitative synthesis. For quantitative synthesis, the mean difference in IL-1β levels across groups of participants was calculated using a random effects meta-analysis. The publication bias was assessed using funnel plots, Egger's test and a contour-enhanced funnel plot.ResultsA total of 1281 articles were discovered, and the 17 that satisfied the inclusion criteria were included for syntheses. The meta-analysis results using data from 555 cases of severe malaria and 1059 cases of uncomplicated malaria showed that severe malaria had a higher mean of IL-1β levels than uncomplicated malaria (P < 0.01, pooled mean difference: 1.92 pg/mL, 95% confidence interval: 0.60-3.25 pg/mL, I2: 90.41%, 6 studies). The meta-analysis results using data from 542 cases of uncomplicated malaria and 455 healthy controls showed no difference in mean IL-1β levels between the two groups (P = 0.07, pooled mean difference: 1.42 pg/mL, 95% confidence interval: - 0.1-2.94 pg/mL, I2: 98.93%, 6 studies).ConclusionThe results from the meta-analysis revealed that IL-1β levels were higher in patients with severe malaria than in patients with uncomplicated malaria; however, IL-1β levels were similar in patients with uncomplicated malaria and healthy controls. Based on the limitations of the number of studies included in the meta-analysis and high levels of heterogeneity, further studies are needed to conclude that differences in IL-1β levels can be useful for monitoring the malaria severity.
Project description:BackgroundGastric cancer (GC) is a malignancy with high morbidity/mortality, partly due to a lack of reliable biomarkers for early diagnosis. It is important to develop reliable biomarker(s) with specificity, sensitivity and convenience for early diagnosis. The role of tumour-associated macrophages (TAMs) and survival of GC patients are controversial. Macrophage colony stimulating factor (MCSF) regulates monocytes/macrophages. Elevated MCSF is correlated with invasion, metastasis and poor survival of tumour patients. IL-34, a ligand of the M-CSF receptor, acts as a "twin" to M-CSF, demonstrating overlapping and complimentary actions. IL-34 involvement in tumours is controversial, possibly due to the levels of M-CSF receptors. While the IL-34/M-CSF/M-CSFR axis is very important for regulating macrophage differentiation, the specific interplay between these cytokines, macrophages and tumour development is unclear.MethodsA multi-factorial evaluation could provide more objective utility, particularly for either prediction and/or prognosis of gastric cancer. Precision medicine requires molecular diagnosis to determine the specifically mutant function of tumours, and is becoming popular in the treatment of malignancy. Therefore, elucidating specific molecular signalling pathways in specific cancers facilitates the success of a precision medicine approach. Gastric cancer tissue arrays were generated from stomach samples with TNM stage, invasion depth and the demography of these patients (n = 185). Using immunohistochemistry/histopathology, M-CSF, IL-34 and macrophages were determined.ResultsWe found that IL-34 may serve as a predictive biomarker, but not as an independent, prognostic factor in GC; M-CSF inversely correlated with survival of GC in TNM III-IV subtypes. Increased CD68+ TAMs were a good prognostic factor in some cases and could be used as an independent prognostic factor in male T3 stage GC.ConclusionOur data support the potency of IL-34, M-CSF, TAMs and the combination of IL-34/TAMs as novel biological markers for GC, and may provide new insight for both diagnosis and cellular therapy of GC.
Project description:In the last two years, the coronavirus disease 19 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a scientific and social challenge worldwide. Vaccines have been the most effective intervention for reducing virus transmission and disease severity. However, virus genetic variants are still circulating among vaccinated individuals with different symptomatology disease cases. Understanding the protective or disease associated mechanisms in vaccinated individuals is relevant to advance in vaccine development and implementation. To address this objective, serum protein profiles were characterized by quantitative proteomics and data analysis algorithms in four cohorts of vaccinated individuals uninfected and SARS-CoV-2 infected with asymptomatic, nonsevere and severe disease symptomatology. The results showed that immunoglobulins were the most overrepresented proteins in infected cohorts when compared to PCR-negative individuals. The immunoglobulin profile varied between different infected cohorts and correlated with protective or disease associated capacity. Overrepresented immunoglobulins in PCR-positive individuals correlated with protective response against SARS-CoV-2, other viruses, and thrombosis in asymptomatic cases. In nonsevere cases, correlates of protection against SARS-CoV-2 and HBV together with risk of myasthenia gravis and allergy and autoantibodies were observed. Patients with severe symptoms presented risk for allergy, chronic idiopathic thrombocytopenic purpura, and autoantibodies. The analysis of underrepresented immunoglobulins in PCR-positive compared to PCR-negative individuals identified vaccine-induced protective epitopes in various coronavirus proteins including the Spike receptor-binding domain RBD. Non-immunoglobulin proteins were associated with COVID-19 symptoms and biological processes. These results evidence host-associated differences in response to vaccination and the possibility of improving vaccine efficacy against SARS-CoV-2.