Project description:Phenolics present in grapes have been explored as cosmeceutical principles, due to their antioxidant activity and ability to inhibit enzymes relevant for skin ageing. The winemaking process generates large amounts of waste, and the recovery of bioactive compounds from residues and their further incorporation in cosmetics represents a promising market opportunity for wine producers and may contribute to a sustainable development of the sector. The extracts obtained from grape marc and wine lees, using solid-liquid (SL) extraction with and without microwave (MW) pretreatment of the raw material, were characterized in terms of antioxidant activity through chemical (ORAC/HOSC/HORAC) and cell-based (keratinocytes-HaCaT; fibroblasts-HFF) assays. Furthermore, their inhibitory capacity towards specific enzymes involved in skin ageing (elastase; MMP-1; tyrosinase) was evaluated. The total phenolic and anthocyanin contents were determined by colorimetric assays, and HPLC-DAD-MS/MS was performed to identify the main compounds. The MW pretreatment prior to conventional SL extraction led to overall better outcomes. The red wine lees extracts presented the highest phenolic content (3 to 6-fold higher than grape marc extracts) and exhibited the highest antioxidant capacity, being also the most effective inhibitors of elastase, MMP-1 and tyrosinase. The results support that winemaking waste streams are valuable sources of natural ingredients with the potential for cosmeceutical applications.
Project description:Cellular senescence is a cellular condition that involves significant changes in gene expression and the arrest of cell proliferation. Recently, it has been suggested in experimental models that the elimination of senescent cells with pharmacological methods delays, prevents, and improves multiple adverse outcomes related to age. In this sense, the so-called senoylitic compounds are a class of drugs that selectively eliminates senescent cells (SCs) and that could be used in order to delay such adverse outcomes. Interestingly, the first senolytic drug (navitoclax) was discovered by using chemoinformatic and network analyses. Thus, in the present study, we searched for novel senolytic compounds through the use of chemoinformatic tools (fingerprinting and network pharmacology) over different chemical databases (InflamNat and BIOFACQUIM) coming from natural products (NPs) that have proven to be quite remarkable for drug development. As a result of screening, we obtained three molecules (hinokitiol, preussomerin C, and tanshinone I) that could be considered senolytic compound candidates since they share similarities in structure with senolytic leads (tunicamycin, ginsenoside Rb1, ABT 737, rapamycin, navitoclax, timosaponin A-III, digoxin, roxithromycin, and azithromycin) and targets involved in senescence pathways with potential use in the treatment of age-related diseases.
Project description:The current status of controversy regarding the use of certain preservatives in cosmetic products makes it necessary to seek new ecological alternatives that are free of adverse effects on users. In our study, the natural terpene thymoquinone was encapsulated in chitosan nanoparticles. The nanoparticles were characterized by DLS and TEM, showing a particle size of 20 nm. The chemical structure, thermal properties, and release profile of thymoquinone were evaluated and showed a successful stabilization and sustained release of terpenes. The antimicrobial properties of the nanoparticles were evaluated against typical microbial contaminants found in cosmetic products, showing high antimicrobial properties. Furthermore, natural moisturizing cream inoculated with the aforementioned microorganisms was formulated with thymoquinone-chitosan nanoparticles to evaluate the preservative efficiency, indicating its promising use as a preservative in cosmetics.
Project description:Ulvan is a complex sulfated polysaccharide in the cell walls of green algae with extensive applications in food, pharmaceutical, and agricultural industries, prompting extensive studies on ulvan, its oligosaccharides, monosaccharides, and cost-effective depolymerization methods. Our primary objectives were to investigate novel ulvan-utilizing marine bacteria, perform recombinant engineering of genes responsible for ulvan depolymerization, and determine their potential industrial applications. Samples were collected from Jeju Island, which is a South Korean region with significant excessive green algal growth, especially that of Ulva species. The marine bacterium Pseudoalteromonas agarivorans efficiently uses ulvan as its primary carbon source, indicating its potential for ulvan degradation. Through whole-genome sequencing the paul40 gene, which is a polysaccharide lyase family 40 (PL40) member, was identified and subsequently engineered into the pET-16b vector for expression as a His-tagged 95 kDa fusion protein. The ulvan depolymerization process was evaluated and confirmed using various analytical techniques including dinitrosalicylic acid assay, thin-layer chromatography, and gel permeation chromatography. Optimal enzyme activity occurred at 35°C, pH 8.0 in phosphate buffer, and 2.5 mM of NaCl. Furthermore, enzyme characterization and specific activity measurements were performed. This study is the first to report hyaluronidase and elastase inhibition by ulvan and its derivatives along with the characterization of an ulvan lyase enzyme from the PL40 family.One-sentence summaryThis study reports the identification and recombinant expression of a novel ulvan-degrading enzyme from Pseudoalteromonas agarivorans, demonstrating its potential for cosmetic industrial applications by revealing ulvan's and partially hydrolyzed ulvan's hyaluronidase and elastase inhibition properties.
Project description:For the past 2 years, the coronavirus responsible for the COVID-19 infection has become a world pandemic, ruining the lives and economies of several nations in the world. This has scaled up research on the virus and the resulting infection with the goal of developing new vaccines and therapies. Natural products are known to be a rich source of lead compounds for drug discovery, including against infectious diseases caused by microbes (viruses, bacteria and fungi). In this review article, we conducted a literature survey aimed at identifying natural products with inhibitory concentrations against the coronaviruses or their target proteins, which lie below 10 µM. This led to the identification of 42 compounds belonging to the alkaloid, flavonoid, terpenoid, phenolic, xanthone and saponin classes. The cut off concentration of 10 µM was to limit the study to the most potent chemical entities, which could be developed into therapies against the viral infection to make a contribution towards limiting the spread of the disease.
Project description:Due to the sustainable organic matter bioconversion process used as substrate for its development, the Hermetia illucens (Linnaeus) larvae biomass is considered a source of compounds with high aggregate value and quite a promising market. The materials that can be extracted from H. illucens larvae have opened the door to a diverse new field of ingredients, mainly for the feed and food industry, but also with potential applicability in cosmetics. In this review we succinctly describe the larval development and rearing cycle, the main compounds identified from different types of extractions, their bioactivities and focus on possible applications in cosmetic products. A search was made in the databases PubMed, ScienceDirect and Web of Science with the terms 'Hermetia illucens', 'bioactives', 'biochemical composition' and 'cosmetics ingredients', which included 71 articles published since 1994.
Project description:ContextThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the COVID-19 infection and responsible for millions of victims worldwide, remains a significant threat to public health. Even after the development of vaccines, research interest in the emergence of new variants is still prominent. Currently, the focus is on the search for effective and safe drugs, given the limitations and side effects observed for the synthetic drugs administered so far. In this sense, bioactive natural products that are widely used in the pharmaceutical industry due to their effectiveness and low toxicity have emerged as potential options in the search for safe drugs against COVID-19. Following this line, we screened 10 bioactive compounds derived from cholesterol for molecules capable of interacting with the receptor-binding domain (RBD) of the spike protein from SARS-CoV-2 (SC2Spike), responsible for the virus's invasion of human cells. Rounds of docking followed by molecular dynamics simulations and binding energy calculations enabled the selection of three compounds worth being experimentally evaluated against SARS-CoV-2.MethodsThe 3D structures of the cholesterol derivatives were prepared and optimized using the Spartan 08 software with the semi-empirical method PM3. They were then exported to the Molegro Virtual Docking (MVD®) software, where they were docked onto the RBD of a 3D structure of the SC2Spike protein that was imported from the Protein Data Bank (PDB). The best poses obtained from MVD® were subjected to rounds of molecular dynamics simulations using the GROMACS software, with the OPLS/AA force field. Frames from the MD simulation trajectories were used to calculate the ligand's free binding energies using the molecular mechanics - Poisson-Boltzmann surface area (MM-PBSA) method. All results were analyzed using the xmgrace and Visual Molecular Dynamics (VMD) software.
Project description:Cherry tree branches (Prunus avium var burlat Rosaceae) are agricultural by-products that are often neglected, yet they are rich in phenolic compounds and highly appreciated for their numerous biological activities. Extracts of cherry tree branches were evaluated for their use in cosmetics, particularly for their antioxidant, anti-tyrosinase, and antimicrobial activities. Samples were obtained by accelerated solvent extraction (ASE) at different ethanol percentages and different temperatures. Fourteen phenolic compounds were identified in the extracts by mass spectrometry. Three major compounds were identified (catechin, genistin, and prunin) representing 84 wt% of the total phenolic compounds. Optimal operating conditions maximizing the content of phenolic compounds were determined using a one factor at a time (OFAT) approach (70% aqueous ethanol, 70 °C). The extract obtained under these conditions also showed the highest antioxidant and anti-tyrosinase activities, certainly due to a high catechin content. Although the antimicrobial activities of extracts are less versatile than those of synthetic molecules, they are nonetheless interesting. According to these results, the extracts of cherry tree branches could be used in cosmetics for their interesting properties.
Project description:Apoptosis, a well-known pattern of programmed cell death, occurs in multicellular organisms not only for controlling tissue homeostasis but also for getting rid of severely damaged cells in order to protect the redundant growth of abnormal cells undergoing cancerous cells. The epidermis of the human skin, composed largely of keratinocytes (KCs), is renewed continuously. Therefore, KCs apoptosis plays a critical role in the maintenance of epidermis structure and function. However, regulated cell death can be disturbed by environmental factors especially ultraviolet radiation (UV) B, leading to the formation of sunburn cells (KCs undergoing UVB-induced apoptosis) and impairing the skin integrity. In the present study, we firstly reported the potential of the natural artocarpin (NAR) to regulate UVB-induced human KCs apoptosis. The NAR showed antilipid peroxidation with an IC50 value of 18.2 ± 1.6 μg/mL, according to TBARS assay while the IC50 value of trolox, a well-known antioxidant, was 7.3 ± 0.8 μg/mL. For cell-based studies, KCs were pretreated with 3.1 μg/mL of the NAR for 24 hr and then exposed to UVB at 55 mJ/cm2. Our data indicated that the NAR pretreatment reduces UVB-induced oxidative stress by scavenging free radicals and nitric oxide and therefore prevents reactive oxygen species (ROS) and reactive nitrogen species- (RNS-) mediated apoptosis. The NAR pretreatment has been shown also to reduce the UVB-induced cyclobutane pyrimidine dimer (CPD) lesions by absorbing UVB radiation and regulating the cell cycle phase. Additionally, the NAR pretreatment was found to modulate the expression of cleaved caspases-3 and 8 that trigger different signalling cascades leading to apoptosis. Thus, these results provide a basis for the investigation of the photoprotective effect of the NAR isolated from A. altilis heartwood and suggest that it can be potentially used as an agent against UVB-induced skin damages.
Project description:Plants belonging to the Rosa genus are known for their high content of bioactive molecules and broad spectrum of healing and cosmetic activities. Rosaplatyacantha Schrenk is a wild-type species abundant in the mountainous regions of Kazakhstan. The phytochemical composition as well as the bioactivity of R.platyacantha extracts have not been fully investigated to date. In this study, various parts of R.platyacantha plant, collected in Almaty region, Kazakhstan, were used to prepare five hydroalcoholic extracts (R1-R5). The extracts were compared for the content of phytochemicals and selected biological activities, which are important for the potential cosmetic application of R.platyacantha. Extract R3, prepared from flower buds, showed the most significant antioxidant and tyrosinase inhibitory potential, decreasing the monophenolase and diphenolase activities of tyrosinase. Extract R3 showed also collagenase inhibitory activity and cytotoxicity against human melanoma cells A375, being less cytotoxic for noncancerous skin keratinocytes HaCaT. Analysis of fractions E and F, obtained from R3 extracts, revealed that quercetin, kaempferol, rutin, and their derivatives are more likely responsible for the tyrosinase inhibitory properties of R.platyacantha extracts.