Ontology highlight
ABSTRACT: Importance
Yeast stress tolerance is an important characteristic that is studied widely, not only regarding its fundamental insights but also for its applications within the biotechnological industry. Here, we investigated the function of two phosphatase encoding genes, DOG1 and DOG2, which are induced as part of the general stress response pathway, but their natural substrate in the cells remains unclear. They are known to dephosphorylate the non-natural substrate 2-deoxyglucose-6-phosphate. Here, we show that overexpression of these genes overcomes the osmosensitive phenotype of mutants that are unable to produce glycerol. However, in these overexpression strains, very little glycerol is produced indicating that the Dog enzymes do not seem to be involved in a previously predicted alternative pathway for glycerol production. Our work shows that overexpression of the DOG genes may improve osmotic and ionic stress tolerance in yeast.
SUBMITTER: Awasthy C
PROVIDER: S-EPMC11302306 | biostudies-literature | 2024 Aug
REPOSITORIES: biostudies-literature
Microbiology spectrum 20240702 8
The <i>Saccharomyces cerevisiae DOG</i> genes, <i>DOG1</i> and <i>DOG2</i>, encode for 2-deoxyglucose-6-phosphate phosphatases. These enzymes of the haloacid dehalogenase superfamily are known to utilize the non-natural 2-deoxyglucose-6-phosphate as their substrate. However, their physiological substrate and hence their biological role remain elusive. In this study, we investigated their potential role as enzymes in biosynthesizing glycerol through an alternative pathway, which involves the deph ...[more]