Project description:BACKGROUND: Osteoporosis (OP) has become a major public health issue, threatening the bone health of middle-aged and elderly people from all around the world. Changes in the gut microbiota (GM) are correlated with the maintenance of bone mass and bone quality. However, research results in this field remain highly controversial, and no systematic review or meta-analysis of the relationship between GM and OP has been conducted. This paper addresses this shortcoming, focusing on the difference in the GM abundance between OP patients and healthy controls based on previous 16S ribosomal RNA (rRNA) gene sequencing results, in order to provide new clinical reference information for future customized prevention and treatment options of OP. METHODS: According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), we comprehensively searched the databases of PubMed, Web of Science, Embase, Cochrane Library, and China National Knowledge Infrastructure (CNKI). In addition, we applied the R programming language version 4.0.3 and Stata 15.1 software for data analysis. We also implemented the Newcastle-Ottawa Scale (NOS), funnel plot analysis, sensitivity analysis, Egger's test, and Begg's test to assess the risk of bias. RESULTS: This research ultimately considered 12 studies, which included the fecal GM data of 2033 people (604 with OP and 1429 healthy controls). In the included research papers, it was observed that the relative abundance of Lactobacillus and Ruminococcus increased in the OP group, while the relative abundance for Bacteroides of Bacteroidetes increased (except for Ireland). Meanwhile, Firmicutes, Blautia, Alistipes, Megamonas, and Anaerostipes showed reduced relative abundance in Chinese studies. In the linear discriminant analysis Effect Size (LEfSe) analysis, certain bacteria showed statistically significant results consistently across different studies. CONCLUSIONS: This observational meta-analysis revealed that changes in the GM were correlated with OP, and variations in some advantageous GM might involve regional differences.
Project description:Here we report 16S rRNA data in gut microbiota of autism spectrum disorders compared with healthy volunteers. A total of 1322 operational taxonomic units (OTUs) were identified in the sequence data. The Bacteroidetes and Firmicutes were both dominated phylum in ausitic subjects and healthy controls. Phylum level analysis showed a clear alteration of the bacterial gut community in ASD characterized by a higher Firmicutes (P < 0.05), Proteobacteria (P < 0.001), and Actinobacteria (P < 0.001) than that in healthy controls. However, Bacteroidetes were significantly decreased in ASD patients (P < 0.001).
Project description:The gut microbiota play a vital role in regulating endocrine-mediated metabolism, immunity, and energy metabolism. However, little is known about the gut microbiota and metabolite composition and development throughout pregnancy and lactation. Here, we used amplicon sequencing to analyze the gut microbiota composition of 35 female mice in five stages of pregnancy and lactation, namely, non-receptive (NR) stages, sexually-receptive (SR) stages, at day 15 of pregnancy (Pre_D15), at the day of birth (Del), and at day 10 of lactation (Lac_D10). The results revealed that the α diversity of gut microbiota was significantly increased during pregnancy and lactation. In addition, the principal coordinate analysis (PCoA) conducted on the amplicon sequence variants' (ASVs') distribution of the 16S rRNA amplicons indicated that the microbiota composition was significantly different among the five groups. Based on a random forest analysis, Oscillospira, Dehalobacterium, and Alistipes were the most important microbiota. The abundance of Allobaculum, Oscillospira, and Ruminococcus were negatively correlated with the serum progesterone concentration, while the abundance of Oscillospira was positively correlated with the propionate and valerate concentration in the caecal contents. Moreover, the concentration of acetate and propionate in the Del and Lac_D10 stages was significantly lower than in the SR and Pre_D15 stages. Our findings indicate that some gut microbes and metabolites vary considerably at the different stages of pregnancy and during lactation stages, which can potentially be used as microbial biomarkers. These results provide information on the potential use of the identified microbes as probiotics to maintain a healthy pregnancy and lactation.
Project description:To explore the effects of gut microbiota of young (8 weeks) or old mice (18~20 months) on stroke, feces of young (Y1-Y9) and old mice (O6-O16) were collected and analyzed by 16s rRNA sequencing. Then stroke model was established on young mouse receive feces from old mouse (DOT1-15) and young mouse receive feces from young mouse (DYT1-15). 16s rRNA sequencing were also performed for those young mice received feces from young and old mice.
Project description:The gut microbiota has been presumed to have a role in the pathogenesis of type 1 diabetes (T1D). Significant changes in the microbial composition of T1D patients have been reported in several case-control studies. This study is aimed at systematically reviewing the existing literature, which has investigated the alterations of the intestinal microbiome in T1D patients compared with healthy controls (HCs) using 16S ribosomal RNA-targeted sequencing. The databases of MEDLINE, EMBASE, Web of Science, and the Cochrane Library were searched until April 2019 for case-control studies comparing the composition of the intestinal microbiome in T1D patients and HCs based on 16S rRNA gene sequencing techniques. The Newcastle-Ottawa Scale was used to assess the methodological quality. Ten articles involving 260 patients with T1D and 276 HCs were included in this systematic review. The quality scores of all included studies were 6-8 points. In summary, a decreased microbiota diversity and a significantly distinct pattern of clustering with regard to ?-diversity were observed in T1D patients when compared with HCs. At the phylum level, T1D was characterised by a reduced ratio of Firmicutes/Bacteroidetes in the structure of the gut community, although no consistent conclusion was reached. At the genus or species level, T1D patients had a reduced abundance of Clostridium and Prevotella compared with HCs, whereas Bacteroides and Ruminococcus were found to be more enriched in T1D patients. This systematic review identified that there is a close association between the gut microbiota and development of T1D. Moreover, gut dysbiosis might be involved in the pathogenesis of T1D, although the causative role of gut microbiota remains to be established. Further well-controlled prospective studies are needed to better understand the role of the intestinal microbiome in the pathogenesis of T1D, which may help explore novel microbiota-based strategies to prevent and treat T1D.
Project description:BackgroundAn increasing number of studies have shown that gut microbiota are associated with human cardiovascular disease, but the characteristics of intestinal flora in patients with acute myocardial infarction (AMI) are still unclear. In this study, we aimed to investigate the difference of intestinal microflora between patients with AMI and healthy people, and to find the effect of percutaneous coronary intervention (PCI) on intestinal microflora.MethodsA total of 60 stool samples and 60 peripheral blood samples were collected from 20 previously diagnosed AMI patients and 20 healthy people serving as controls. Gut microbiota communities were analyzed via 16 ribosomal RNA-sequencing (16S rRNA). Gut microbiota-derived metabolites, trimethylamine N-oxide (TMAO) and short-chain fatty acids (SCFA), in the blood were detected using stable isotope dilution high-performance liquid chromatography with on line electrospray ionization tandem mass spectrometry (LC/MS/MS).ResultsThe results showed that a distinct pattern of gut microbiota was observed in AMI patients compared to healthy controls. AMI patients had lower microbiological richness but no significant change in diversity. Bacteroidetes and Verrucomicobia showed an upward trend, whereas Proteobacteria showed a downward trend in AMI patients. During a longitudinal study to compare the changes in bacteria before and after treatment, we found routine cardiac admission therapy 1 week after PCI surgery had no effect on the microbial community structure in patients. There were significantly higher levels of plasma TMAO in AMI patients' microbiota than that in the control group. Contrarily, there was no obvious change in SCFA.ConclusionsThe gut microbiota of patients with AMI differs from that of normal people, and the metabolic products of microflora are more abundant in the plasma of AMI than control cases. Microflora may act on the cardiovascular system through metabolites, and regulation of the microfloral structure may be used in the future treatment of cardiovascular diseases.
Project description:BackgroundBiliary atresia (BA) is a severe neonatal disease with progressive intra- and extra-hepatic bile ducts inflammation and hepatic fibrosis. Characterization of gut microbiome profiles in infants with biliary atresia can provide valuable information and potential disease biomarkers. Our study aims to explore the relationship between gut microbiota and biliary atresia.Methods16 S ribosomal RNA (rRNA) gene sequencing was carried out to identify the differences in composition and diversity of gut microbiota between infants with BA and healthy subjects. A total of 31 infants with biliary atresia and 20 healthy subjects were recruited.ResultsThe composition of gut microbiota in BA group was significantly different with the normal control group (P < 0.05) and the abundance ratio of Klebsiella/Bifidobacterium showed great potential for identification of BA (P < 0.01). In addition, the differential bacterial taxa were involved in lipid and vitamins metabolism.ConclusionOur results could provide potential non-invasive biomarker for identification of biliary atresia and contribute to the treatment in terms of ameliorating microbiota dysbiosis.
Project description:The gut microbiota residing in the distal ileum and colon is the most complex, diverse, and densest microbial ecosystem in the human body. Despite its known role in human health and disease, gut microbiome diversity and function are rarely explored in vulnerable populations such as refugees. The current study aimed to explore gut microbiota diversity and sources of variation among adolescent Afghan refugees residing in Peshawar, Pakistan. Stool samples were collected from 10 - 18 years old, healthy adolescents (n=205) for 16S rRNA gene sequence (V4-V5 hypervariable region) analysis on isolated faecal DNA. Bioinformatics analyses were performed using Kraken2, Bracken and Phyloseq. The data presented here will allow researchers to profile the gut microbiota of this rarely explored, vulnerable population who are at high risk of food insecurity and malnutrition. The data can be used to provide insight on the impact of demographic characteristics, dietary intake, nutritional status, and health on gut microbiome diversity, and enables a comparative analysis with similar data sets from other population groups of relevance. The amplicon sequencing data are deposited in the NCBI Sequence Read Archive as BioProject PRJNA1105775.
Project description:BackgroundObesity is a global epidemic in the industrialized and developing world, and many children suffer from obesity-related complications. Gut microbiota dysbiosis might have significant effect on the development of obesity. The microbiota continues to develop through childhood and thus childhood may be the prime time for microbiota interventions to realize health promotion or disease prevention. Therefore, it is crucial to understand the structure and function of pediatric gut microbiota.MethodsAccording to the inclusion criteria and exclusion criteria, twenty-three normal weight and twenty-eight obese children were recruited from Nanjing, China. Genomic DNA was extracted from fecal samples. The V4 region of the bacterial 16S rDNA was amplified by PCR, and sequencing was applied to analyze the gut microbiota diversity and composition using the Illumina HiSeq 2500 platform.ResultsThe number of operational taxonomic units (OTUs) showed a decrease in the diversity of gut microbiota with increasing body weight. The alpha diversity indices showed that the normal weight group had higher abundance and observed species than the obese group (Chao1: P < 0.001; observed species: P < 0.001; PD whole tree: P < 0.001; Shannon index: P = 0.008). Principal coordinate analysis (PCoA) and Nonmetric multidimensional scaling (NMDS) revealed significant differences in gut microbial community structure between the normal weight group and the obese group. The liner discriminant analysis (LDA) effect size (LEfSe) analysis showed that fifty-five species of bacteria were abundant in the fecal samples of the normal weight group and forty-five species of bacteria were abundant in the obese group. In regard to phyla, the gut microbiota in the obese group had lower proportions of Bacteroidetes (51.35%) compared to the normal weight group (55.48%) (P = 0.030). There was no statistical difference in Firmicutes between the two groups (P = 0.436), and the Firmicutes/Bacteroidetes between the two groups had no statistical difference (P = 0.983). At the genus level, Faecalibacterium, Phascolarctobacterium, Lachnospira, Megamonas, and Haemophilus were significantly more abundant in the obese group than in the normal weight group (P = 0.048, P = 0.018, P < 0.001, P = 0.040, and P = 0.003, respectively). The fecal microbiota of children in the obese group had lower proportions of Oscillospira and Dialister compared to the normal weight group (P = 0.002 and P = 0.002, respectively).ConclusionsOur results showed a decrease in gut microbiota abundance and diversity as the BMI increased. Variations in the bacterial community structure were associated with obesity. Gut microbiota dysbiosis might play a crucial part in the development of obesity in Chinese children.