Project description:The identification of patients at high risk of relapse is a critical goal of modern translational research in oncohematology. Minimal residual disease (MRD) detection by polymerase chain reaction-based methods is routinely employed in the management of patients with acute lymphoblastic leukemia. Current knowledge indicates that it is also a useful prognostic tool in several mature lymphoproliferative disorders and particularly in follicular lymphoma (FL). Based on this evidence clinical trials employing MRD-based risk stratification are currently ongoing in FL. In this review the 'state of the art' of MRD evaluation in FL is discussed. A short description of technical issues and recent methodological advances is provided. Then, the bulk of the review focuses on critical take-home messages for clinicians working in the field. Finally, we discuss future perspectives of MRD detection and more generally outcome prediction in FL.
Project description:Minimal residual disease (MRD) is usually defined as the small number of cancer cells that remain in the body after treatment. The clinical significance of MRD kinetics is well recognized in treatment of hematologic malignancies, particularly acute lymphoblastic leukemia (ALL). Real time quantitative PCR targeting immunoglobulin (Ig) or T-cell receptor (TCR) rearrangement (PCR-MRD), as well as multiparametric flow cytometric analysis targeting antigen expression, are widely used in MRD detection. In this study, we devised an alternative method to detect MRD using droplet digital PCR (ddPCR), targeting somatic single nucleotide variants (SNVs). This ddPCR-based method (ddPCR-MRD) had sensitivity up to 1E-4. We assessed ddPCR-MRD at 26 time points from eight T-ALL patients, and compared it to the results of PCR-MRD. Almost all results were concordant between the two methods, but ddPCR-MRD detected micro-residual disease that was missed by PCR-MRD in one patient. We also measured MRD in stored ovarian tissue of four pediatric cancer patients, and detected 1E-2 of submicroscopic infiltration. Considering the universality of ddPCR-MRD, the methods can be used as a complement for not only ALL, but also other malignant diseases regardless of tumor-specific Ig/TCR or surface antigen patterns.
Project description:To identify new markers for minimal residual disease (MRD) detection in acute lymphoblastic leukemia (ALL), we compared genome-wide gene expression of lymphoblasts from 270 patients with newly diagnosed childhood ALL to that of normal CD19 CD10 B-cell progenitors (n=4). Expression of 30 genes differentially expressed by > 3-fold in at least 25% of cases of ALL (or 40% of ALL subtypes) was tested by flow cytometry in 200 B-lineage ALL and 61 nonleukemic BM samples, including samples containing hematogones. Of the 30 markers, 22 (CD44, BCL2, HSPB1, CD73, CD24, CD123, CD72, CD86, CD200, CD79b, CD164, CD304, CD97, CD102, CD99, CD300a, CD130, PBX1, CTNNA1, ITGB7, CD69, CD49f) were differentially expressed in up to 81.4% of ALL cases; expression of some markers was associated with the presence of genetic abnormalities. Results of MRD detection by flow cytometry with these markers correlated well with those of molecular testing (52 follow-up samples from 18 patients); sequential studies during treatment and diagnosis-relapse comparisons documented their stability. When incorporated in 6-marker combinations, the new markers afforded the detection of 1 leukemic cell among 105 BM cells. These new markers should allow MRD studies in all B-lineage ALL patients, and substantially improve their sensitivity.
Project description:BackgroundStringent complete response (sCR) is used as a deeper response category than complete response (CR) in multiple myeloma (MM) but may be of limited value in the era of minimal residual disease (MRD) testing.MethodsHere, we used 4-colour multiparametric flow cytometry (MFC) or next-generation sequencing (NGS) of immunoglobulin genes to analyse and compare the prognostic impact of sCR and MRD monitoring. We included 193 treated patients in two institutions achieving CR, for which both bone marrow aspirates and biopsies were available.ResultsWe found that neither the serum free light chain ratio, clonality by immunohistochemistry (IHC) nor plasma cell bone marrow infiltration identified CR patients at distinct risk. Patients with sCR had slightly longer progression-free survival. Nevertheless, persistent clonal bone marrow disease was detectable using MFC or NGS and was associated with significantly inferior outcomes compared with MRD-negative cases.ConclusionOur results confirm that sCR does not predict a different outcome and indicate that more sensitive techniques are able to identify patients with differing prognoses. We suggest that MRD categories should be implemented over sCR for the future classification of MM responses.
Project description:We evaluate clinical significance of recently identified subtypes of acute lymphoblastic leukemia (ALL) in 598 children treated with minimal residual disease (MRD)-directed therapy. Among the 16 B-ALL and 8 T-ALL subtypes identified by next generation sequencing, ETV6-RUNX1, high-hyperdiploid and DUX4-rearranged B-ALL had the best five-year event-free survival rates (95% to 98.4%); TCF3-PBX1, PAX5alt, T-cell, ETP, iAMP21, and hypodiploid ALL intermediate rates (80.0% to 88.2%); and BCR-ABL1, BCR-ABL1-like and ETV6-RUNX1-like and KMT2A-rearranged ALL the worst rates (64.1% to 76.2%). All but three of the 142 patients with day-8 blood MRD <0.01% remained in remission. Among new subtypes, intensified therapy based on day-15 MRD≥1% improved outcome of DUX4-rearranged, BCR-ABL1-like, and ZNF384-rearranged ALL, and achievement of day-42 MRD<0.01% did not preclude relapse of PAX5alt, MEF2D-rearranged and ETV6-RUNX1-like ALL. Thus, new subtypes including DUX4-rearranged, PAX5alt, BCR-ABL1-like, ETV6-RUNX1-like, MEF2D-rearranged and ZNF384-rearranged ALL have important prognostic and therapeutic implications.
Project description:The detection of circulating tumor DNA via liquid biopsy has become an important diagnostic test for patients with cancer. While certain commercial liquid biopsy platforms designed to detect circulating tumor DNA have been approved to guide clinical decisions in advanced solid tumors, the clinical utility of these assays for detecting minimal residual disease after curative-intent treatment of nonmetastatic disease is currently limited. Predicting disease response and relapse has considerable potential for increasing the effective implementation of neoadjuvant and adjuvant therapies. As a result, many companies are rapidly investing in the development of liquid biopsy platforms to detect circulating tumor DNA in the minimal residual disease setting. In this review, we discuss the development and clinical implementation of commercial liquid biopsy platforms for circulating tumor DNA minimal residual disease detection of solid tumors. Here, we aim to highlight the technological features that enable highly sensitive detection of tumor-derived genomic alterations, the factors that differentiate these commercial platforms, and the ongoing trials that seek to increase clinical implementation of liquid biopsies using circulating tumor DNA-based minimal residual disease detection.
Project description:To identify new markers for minimal residual disease (MRD) detection in acute lymphoblastic leukemia (ALL), we compared genome-wide gene expression of lymphoblasts from 270 patients with newly diagnosed childhood ALL to that of normal CD19?CD10? B-cell progenitors (n = 4). Expression of 30 genes differentially expressed by ? 3-fold in at least 25% of cases of ALL (or 40% of ALL subtypes) was tested by flow cytometry in 200 B-lineage ALL and 61 nonleukemic BM samples, including samples containing hematogones. Of the 30 markers, 22 (CD44, BCL2, HSPB1, CD73, CD24, CD123, CD72, CD86, CD200, CD79b, CD164, CD304, CD97, CD102, CD99, CD300a, CD130, PBX1, CTNNA1, ITGB7, CD69, CD49f) were differentially expressed in up to 81.4% of ALL cases; expression of some markers was associated with the presence of genetic abnormalities. Results of MRD detection by flow cytometry with these markers correlated well with those of molecular testing (52 follow-up samples from 18 patients); sequential studies during treatment and diagnosis-relapse comparisons documented their stability. When incorporated in 6-marker combinations, the new markers afforded the detection of 1 leukemic cell among 10(5) BM cells. These new markers should allow MRD studies in all B-lineage ALL patients, and substantially improve their sensitivity.
Project description:Acute myeloid leukemia (AML) is a hematological malignancy characterized by an abundance of incompletely matured or immature clonally derived hematopoietic precursors called leukemic blasts. Rare leukemia stem cells (LSCs) that can self-renew as well as give rise to leukemic progenitors comprising the bulk of leukemic blasts are considered the cellular reservoir of disease initiation and maintenance. LSCs are widely thought to be relatively resistant as well as adaptive to chemotherapy and can cause disease relapse. Therefore, it is imperative to understand the molecular bases of LSC forms and functions during different stages of disease progression, so we can more accurately identify these cells and design therapies to target them. Irrespective of the morphological, cytogenetic, and cellular heterogeneity of AML, the uniform, singularly important and independently significant prognosticator of disease response to therapy and patient outcome is measurable or minimal residual disease (MRD) detection, defined by residual disease detection below the morphology-based 5% blast threshold. The importance of LSC identification and frequency estimation during MRD detection, in order to make MRD more effective in predicting disease relapse and modifying therapeutic regimen is becoming increasingly apparent. This review focuses on summarizing functional and cellular composition-based LSC identification and linking those studies to current techniques of MRD detection to suggest LSC-inclusive MRD detection as well as outline outstanding questions that need to be addressed to improve the future of AML clinical management and treatment outcomes.
Project description:BackgroundMinimal residual disease (MRD) following treatment is a robust prognostic marker in B lymphoblastic leukemia. However, the detection of MRD by flow cytometric immunophenotyping is technically challenging, and an automated method to detect MRD is therefore desirable. viSNE, a recently developed computational tool based on the t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm, has been shown to be capable of detecting synthetic "MRD-like" populations of leukemic cells created in vitro, but whether viSNE can facilitate the immunophenotypic detection of MRD in clinical samples has not been evaluated.MethodsWe applied viSNE retrospectively to 8-color flow cytometric immunophenotyping data from normal bone marrow samples, and samples from B lymphoblastic leukemia patients with or without suspected MRD on the basis of conventional manual gating.ResultsIn each of 14 bone marrow specimens containing MRD or suspected MRD, viSNE identified a putative MRD population; an abnormal composite immunophenotype was confirmed for the putative MRD in each case. MRD populations were not identified by viSNE in control bone marrow samples from patients with increased normal B-cell precursors, or in post-treatment samples from B lymphoblastic leukemia patients who did not have detectable MRD by manual gating.ConclusionviSNE shows promise as an automated method to facilitate immunophenotypic MRD detection in patients treated for B lymphoblastic leukemia.