Project description:Nowadays, many commercial kits allowing the detection of digestive parasites by DNA amplification methods have been developed, including simplex PCR assays (SimpPCRa) allowing the identification of a single parasite, and multiplex PCR assays (MultPCRa) allowing the identification of several parasites at once. Thus, aimed at improving the diagnosis of intestinal protozoal infections, it is essential to evaluate the performances of these new tools. A total of 174 DNA samples collected between 2007 and 2017 were retrospectively included in this study. Performances of four commercial SimpPCRa (i.e., CerTest-VIASURETM) and three MultPCRa (i.e., CerTest-VIASURETM, FAST-TRACK-Diagnostics-FTD-Stool-ParasiteTM and DIAGENODE-Gastroenteritis/Parasite-panel-ITM) were evaluated for the detection of Cryptosporidium spp., Entamoeba spp., and Giardia intestinalis in stool samples compared to our routinely used in-house SimpPCRa. Globally, the SimpPCRa showed better sensitivity/specificity for the detection of G. intestinalis, E. histolytica, E. dispar, and Cryptosporidium spp. (i.e., 96.9/93.6%; 100/100%; 95.5/100%; and 100/99.3%, respectively), compared to the three commercial MultPCRa tested. All in all, we showed that MultPCRa offer an interesting alternative for the detection of protozoans in stool samples depending on the clinical context.
Project description:Mucormycosis is a severe and emerging invasive fungal infection associated with high mortality rates. Early diagnosis is crucial for initiating specific antifungal treatment, with molecular tools currently representing the most efficient diagnostic approach. Presently, a standardized in-house real-time PCR method is widely employed for diagnosing mucormycosis. Our study aimed to evaluate the agreement for the Mucorales DNA detection between two commercial real-time PCR assays-the Fungiplex Mucorales Real-Time PCR Kit and the MycoGENIE Aspergillus-Mucorales spp. Real-Time PCR Kit-in comparison with the in-house PCR. We retrospectively analyzed 58 samples previously identified as positive for Mucorales using the in-house PCR. These samples, obtained from 22 patients with proven or probable mucormycosis, were tested with both commercial kits. Additionally, samples from 40 patients without mucormycosis served as negative controls. Our findings revealed that the MycoGENIE Kit demonstrated superior performance in detecting Mucorales DNA in samples identified as positive by the in-house PCR. Notably, we observed minimal variability in cycle threshold (CT) values when comparing the results of the MycoGENIE Kit with those of the in-house PCR, with an average difference of 1.8 cycles. In contrast, the Fungiplex Kit exhibited a larger discrepancy in CT values compared to the in-house PCR, with an average difference of 4.1 cycles. The MycoGENIE Kit exhibited very good agreement (kappa of 0.82) with the in-house PCR for detecting Mucorales DNA across various sample types. These findings are important for the choice of kits that could be used to diagnose mucormycosis in clinical microbiology laboratories.ImportanceEarly diagnosis of mucormycosis is crucial for initiating effective treatment. The detection of Mucorales DNA by PCR in serum has revolutionized the diagnosis of this infection. However, the use of in-house methods can be time consuming. The availability of a commercial kit eliminates the need for in-house assay development, reducing laboratory workload and ensuring consistent performance across different healthcare settings. Currently, there are several commercial assays available, but many have limited evaluation. In this study, we compared two commercial kits and found that the MycoGENIE Kit offers a promising alternative to the in-house method.
Project description:To improve the efficacy of the in-house validation of GMO detection methods (DNA isolation and real-time PCR, polymerase chain reaction), a study was performed to gain insight in the contribution of the different steps of the GMO detection method to the repeatability and in-house reproducibility. In the present study, 19 methods for (GM) soy, maize canola and potato were validated in-house of which 14 on the basis of an 8-day validation scheme using eight different samples and five on the basis of a more concise validation protocol. In this way, data was obtained with respect to the detection limit, accuracy and precision. Also, decision limits were calculated for declaring non-conformance (>0.9%) with 95% reliability. In order to estimate the contribution of the different steps in the GMO analysis to the total variation variance components were estimated using REML (residual maximum likelihood method). From these components, relative standard deviations for repeatability and reproducibility (RSD(r) and RSD(R)) were calculated. The results showed that not only the PCR reaction but also the factors 'DNA isolation' and 'PCR day' are important factors for the total variance and should therefore be included in the in-house validation. It is proposed to use a statistical model to estimate these factors from a large dataset of initial validations so that for similar GMO methods in the future, only the PCR step needs to be validated. The resulting data are discussed in the light of agreed European criteria for qualified GMO detection methods.
Project description:IntroductionAccurate and sensitive measurement of antibodies is critical to assess the prevalence of infection, especially asymptomatic infection, and to analyze the immune response to vaccination during outbreaks and pandemics. A broad variety of commercial and in-house serological assays are available to cater to different laboratory requirements; however direct comparison is necessary to understand utility.Materials and methodsWe investigate the performance of six serological methods against SARS-CoV-2 to determine the antibody profile of 250 serum samples, including 234 RT-PCR-confirmed SARS-CoV-2 cases, the majority with asymptomatic presentation (87.2%) at 1-51 days post laboratory diagnosis. First, we compare to the performance of two in-house antibody assays: (i) an in-house IgG ELISA, utilizing UV-inactivated virus, and (ii) a live-virus neutralization assay (PRNT) using the same Cambodian isolate as the ELISA. In-house assays are then compared to standardized commercial anti-SARS-CoV-2 electrochemiluminescence immunoassays (Elecsys ECLIAs, Roche Diagnostics; targeting anti-N and anti-S antibodies) along with a flow cytometry based assay (FACS) that measures IgM and IgG against spike (S) protein and a multiplex microsphere-based immunoassay (MIA) determining the antibodies against various spike and nucleoprotein (N) antigens of SARS-CoV-2 and other coronaviruses (SARS-CoV-1, MERS-CoV, hCoVs 229E, NL63, HKU1).ResultsOverall, specificity of assays was 100%, except for the anti-S IgM flow cytometry based assay (96.2%), and the in-house IgG ELISA (94.2%). Sensitivity ranged from 97.3% for the anti-S ECLIA down to 76.3% for the anti-S IgG flow cytometry based assay. PRNT and in-house IgG ELISA performed similarly well when compared to the commercial ECLIA: sensitivity of ELISA and PRNT was 94.7 and 91.1%, respectively, compared to S- and N-targeting ECLIA with 97.3 and 96.8%, respectively. The MIA revealed cross-reactivity of antibodies from SARS-CoV-2-infected patients to the nucleocapsid of SARS-CoV-1, and the spike S1 domain of HKU1.ConclusionIn-house serological assays, especially ELISA and PRNT, perform similarly to commercial assays, a critical factor in pandemic response. Selection of suitable immunoassays should be made based on available resources and diagnostic needs.
Project description:The final months of 2019 witnessed the emergence of a novel coronavirus in the human population. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has since spread across the globe and is posing a major burden on society. Measures taken to reduce its spread critically depend on timely and accurate identification of virus-infected individuals by the most sensitive and specific method available, i.e. real-time reverse transcriptase PCR (RT-PCR). Many commercial kits have recently become available, but their performance has not yet been independently assessed. The aim of this study was to compare basic analytical and clinical performance of selected RT-PCR kits from seven different manufacturers (Altona Diagnostics, BGI, CerTest Biotec, KH Medical, PrimerDesign, R-Biopharm AG, and Seegene). We used serial dilutions of viral RNA to establish PCR efficiency and estimate the 95 % limit of detection (LOD95). Furthermore, we ran a panel of SARS-CoV-2-positive clinical samples (n = 13) for a preliminary evaluation of clinical sensitivity. Finally, we used clinical samples positive for non-coronavirus respiratory viral infections (n = 6) and a panel of RNA from related human coronaviruses to evaluate assay specificity. PCR efficiency was ≥96 % for all assays and the estimated LOD95 varied within a 6-fold range. Using clinical samples, we observed some variations in detection rate between kits. Importantly, none of the assays showed cross-reactivity with other respiratory (corona)viruses, except as expected for the SARS-CoV-1 E-gene. We conclude that all RT-PCR kits assessed in this study may be used for routine diagnostics of COVID-19 in patients by experienced molecular diagnostic laboratories.
Project description:Seven commercial rotavirus antigen assays were compared with in-house PCR methods for detecting rotavirus in stool specimens. The assay sensitivities were 80% to 100%, while the specificities were 54.3% for one commercial immunochromatographic (ICT) method and 99.4% to 100% for other assays. Thus, except for one commercial ICT, all the assays were generally reliable for rotavirus detection.
Project description:Consumption of low levels of egg already can evoke harmful physiological responses in humans in those allergic to eggs. By detection of egg in food products, using Egg ELISA kits to determine its unintended presence, food producers can respond to avoid potential safety or quality risks of their products. Selection of an ELISA kit fit for the issue at hand is challenging due to, amongst others, lack of information on assay performances with specified matrices. In this study, performances of seven commercial egg ELISA kits are compared for nine different relevant matrices: cookie, chocolate, pasta, dressing, stock cube, wine, vegetable drink and milk, ice cream and meat/meat replacers. The presence of egg was unified for all ELISA kits to mg total egg protein kg-1 food product. In every matrix, kit performances for recovery, intra- and interassay were compared, and also processing is accounted for by determination of egg in incurred samples. All seven kits were able to detect egg qualitatively at the VITAL3 ED01 level of 0.2 mg total egg protein and the corresponding relevant portion size for each matrix. For quantitative results, each ELISA kit showed an increase in detected egg concentration with increased egg levels and performed within the set criteria for recovery for the cookie, chocolate, stock cube and wine. For pasta, vegetable drink and milk, ice cream, and salad dressing, recovery of egg was within the set criteria for at least 4 ELISA kits. Most challenging matrices were meat/meat replacers, showing high matrix effects which could not be explained by the possible egg presence in the cognate blank. Only one ELISA kit was able to recover egg within the set criteria for the meat/meat replacer matrix. Results enable food industry to choose for ELISA kits suitable for egg detection in the matrix of interest.
Project description:We compared the sensitivity and specificity of four commercial coronavirus disease (COVID-19) diagnostic kits using real-time reverse transcription-polymerase chain reaction (RT-PCR). Kits I-IV approved by the State Drug Administration of China were selected, and the detection targets were ORF1ab gene and N gene. Specificity was evaluated by detecting other respiratory viruses. The sensitivity and batch effect of each kit were evaluated by testing 10-fold dilutions of RNA. Clinical application was verified by testing nasopharyngeal swab and sputum specimens from COVID-19 patients. Among the 78 cases infected by other respiratory viruses, no amplification curve was observed using these four COVID-19 RT-PCR kits. The minimum detection limits of kits I-IV were 10-6 , 10-5 , 10-5 , and 10-6 dilutions, respectively, and concentrations were 10 copies/mL (10-5 dilution) and 1 copies/mL (10-6 dilution). The sensitivities of kits I-IV detected using 142 nasopharyngeal swab specimens from COVID-19 patients were 91.55%, 81.69%, 80.28%, and 90.85%, respectively, while they were 92.68%, 85.37%, 82.93%, and 93.90%, respectively, for the 82 sputum samples. The specificity of each kit was 100.00% (77/77). The total expected detection rate using sputum samples was 88.59% (691/780) higher than 86.15% (672/780) of nasopharyngeal swabs. Comparison of nasopharyngeal swab and sputum samples from the same COVID-19 patient led to the detection of ORF1ab and N genes in 16 (100%) sputum samples; only ORF1ab and N genes were detected in 12 (75%) and 14 (87.5%) nasopharyngeal swab specimens, respectively. In conclusion, comparison of commercial COVID-19 RT-PCR kits should be performed before using a new batch of such kits in routine diagnostics.
Project description:For correct allergen risk management by industry, retail and food safety authorities, sensitive and reliable fast allergen detection methods are required, even more when precautionary allergen labelling based on reference doses will be implemented in legislation. This study aimed to perform a comparative assessment of three commercially available quantitative or qualitative test kits, for DNA analysis of celery in food products. Five product groups, representing different sectors of the AOAC food-matrix triangle, being (plant-based) meat products, snacks, sauces, dried herbs and spices, and smoothies, were identified to potentially contain celery. From each group, blank and incurred (labelled to contain celery) food products were selected, of which the blank food products were additionally spiked with low protein levels of celery prior to qPCR assessment. Results show that the assessed test kits perform according to their specifications, however, a clear influence of the matrix on the detection ability of celery was observed. In addition, quantification of the amount of celery in the different food products showed to be challenging in all food product groups using the two quantification kits.
Project description:BackgroundSensitivity and specificity for commercial and in-house pancreatic lipase immunoreactivity (cPLI) assays have been reported, but repeatability under routine clinical conditions is unknown.ObjectivesTo determine: Coefficient of variation (CV) between replicates of a commercial assay (Spec cPL) and 2 in-house assays (VetScan cPL, Vcheck cPL) under routine conditions. Effects of sample condition or personnel on results. Potential directional bias between assays.AnimalsSerum from 12 canine clinical patients.MethodsProspective study. Serum Spec cPL, VetScan cPL, and Vcheck cPL (6 aliquots each) were measured, and CVs were calculated, effects of sample condition and personnel were assessed using a linear mixed model, and direction of bias was assessed using least square mean cPLI concentration.ResultsMean %CVs for Spec cPL, VetScan cPL, and Vcheck cPL were 5.5, 17.0, and 23.7%. Three of 6 VetScan cPL samples and 5/9 Vcheck cPL samples had an unacceptably high %CV (>20%). Transportation (Spec cPL) and sample condition or personnel (VetScan cPL, Vcheck cPL) did not affect repeatability. Least square mean cPL was higher for Spec cPL (807.9 μg/L) than for VetScan cPL (558.5 μg/L) or Vcheck cPL (399.8 μg/L).Conclusions and clinical importanceFor clinical use, the commercial Spec cPL has the highest repeatability, and Vcheck cPL has significantly lower repeatability. Both in-house assays evaluated may provide discrepant categorical results ("pancreatitis" versus "equivocal" versus "not pancreatitis") for the same sample. In-house pancreatic lipase concentrations may be lower than those determined by the Spec cPL assay.