Unknown

Dataset Information

0

Fully automated epicardial adipose tissue volume quantification with deep learning and relationship with CAC score and micro/macrovascular complications in people living with type 2 diabetes: the multicenter EPIDIAB study.


ABSTRACT:

Background

The aim of this study (EPIDIAB) was to assess the relationship between epicardial adipose tissue (EAT) and the micro and macrovascular complications (MVC) of type 2 diabetes (T2D).

Methods

EPIDIAB is a post hoc analysis from the AngioSafe T2D study, which is a multicentric study aimed at determining the safety of antihyperglycemic drugs on retina and including patients with T2D screened for diabetic retinopathy (DR) (n = 7200) and deeply phenotyped for MVC. Patients included who had undergone cardiac CT for CAC (Coronary Artery Calcium) scoring after inclusion (n = 1253) were tested with a validated deep learning segmentation pipeline for EAT volume quantification.

Results

Median age of the study population was 61 [54;67], with a majority of men (57%) a median duration of the disease 11 years [5;18] and a mean HbA1c of7.8 ± 1.4%. EAT was significantly associated with all traditional CV risk factors. EAT volume significantly increased with chronic kidney disease (CKD vs no CKD: 87.8 [63.5;118.6] vs 82.7 mL [58.8;110.8], p = 0.008), coronary artery disease (CAD vs no CAD: 112.2 [82.7;133.3] vs 83.8 mL [59.4;112.1], p = 0.0004, peripheral arterial disease (PAD vs no PAD: 107 [76.2;141] vs 84.6 mL[59.2; 114], p = 0.0005 and elevated CAC score (> 100 vs  < 100 AU: 96.8 mL [69.1;130] vs 77.9 mL [53.8;107.7], p < 0.0001). By contrast, EAT volume was neither associated with DR, nor with peripheral neuropathy. We further evidenced a subgroup of patients with high EAT volume and a null CAC score. Interestingly, this group were more likely to be composed of young women with a high BMI, a lower duration of T2D, a lower prevalence of microvascular complications, and a higher inflammatory profile.

Conclusions

Fully-automated EAT volume quantification could provide useful information about the risk of both renal and macrovascular complications in T2D patients.

SUBMITTER: Gaborit B 

PROVIDER: S-EPMC11373274 | biostudies-literature | 2024 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Fully automated epicardial adipose tissue volume quantification with deep learning and relationship with CAC score and micro/macrovascular complications in people living with type 2 diabetes: the multicenter EPIDIAB study.

Gaborit Bénédicte B   Julla Jean Baptiste JB   Fournel Joris J   Ancel Patricia P   Soghomonian Astrid A   Deprade Camille C   Lasbleiz Adèle A   Houssays Marie M   Ghattas Badih B   Gascon Pierre P   Righini Maud M   Matonti Frédéric F   Venteclef Nicolas N   Potier Louis L   Gautier Jean François JF   Resseguier Noémie N   Bartoli Axel A   Mourre Florian F   Darmon Patrice P   Jacquier Alexis A   Dutour Anne A  

Cardiovascular diabetology 20240903 1


<h4>Background</h4>The aim of this study (EPIDIAB) was to assess the relationship between epicardial adipose tissue (EAT) and the micro and macrovascular complications (MVC) of type 2 diabetes (T2D).<h4>Methods</h4>EPIDIAB is a post hoc analysis from the AngioSafe T2D study, which is a multicentric study aimed at determining the safety of antihyperglycemic drugs on retina and including patients with T2D screened for diabetic retinopathy (DR) (n = 7200) and deeply phenotyped for MVC. Patients inc  ...[more]

Similar Datasets

| S-EPMC6397960 | biostudies-literature
| S-EPMC8422968 | biostudies-literature
| S-EPMC9746017 | biostudies-literature
| S-EPMC2991000 | biostudies-literature
| S-EPMC9563469 | biostudies-literature
| S-EPMC10562624 | biostudies-literature
| S-EPMC6405553 | biostudies-literature
| S-EPMC9174049 | biostudies-literature
| S-EPMC10012007 | biostudies-literature
| S-EPMC11790810 | biostudies-literature