Project description:Tumour recurrence is currently a hot topic in liver transplantation. The basic mechanisms are increasingly discussed, and, for example, recurrence of hepatocellular carcinoma is often described in pre-injured donor livers, which frequently suffer from significant ischemia/reperfusion injury. This review article highlights the underlying mechanisms and describes the specific tissue milieu required to promote tumour recurrence after liver transplantation. We summarise the current literature in this field and show risk factors that contribute to a pro-tumour-recurrent environment. Finally, the potential role of new machine perfusion technology is discussed, including the most recent data, which demonstrate a protective effect of hypothermic oxygenated perfusion before liver transplantation.
Project description:For the multistage progression of prostate cancer (PCa) and resistance to immunotherapy, tumour-associated macrophage is an essential contributor. Although immunotherapy is an important and promising treatment modality for cancer, most patients with PCa are not responsive towards it. In addition to exploring new therapeutic targets, it is imperative to identify highly immunotherapy-sensitive individuals. This research aimed to establish a signature risk model, which derived from the macrophage, to assess immunotherapeutic responses and predict prognosis. Data from the UCSC-XENA, GEO and TISCH databases were extracted for analysis. Based on both single-cell datasets and bulk transcriptome profiles, a macrophage-related score (MRS) consisting of the 10-gene panel was constructed using the gene set variation analysis. MRS was highly correlated with hypoxia, angiogenesis, and epithelial-mesenchymal transition, suggesting its potential as a risk indicator. Moreover, poor immunotherapy responses and worse prognostic performance were observed in the high-MRS group of various immunotherapy cohorts. Additionally, APOE, one of the constituent genes of the MRS, affected the polarisation of macrophages. In particular, the reduced level of M2 macrophage and tumour progression suppression were observed in PCa xenografts which implanted in Apolipoprotein E-knockout mice. The constructed MRS has the potential as a robust prognostic prediction tool, and can aid in the treatment selection of PCa, especially immunotherapy options.
Project description:The potential role of endothelin receptor A (EDNRA) in cancer immunotherapy has been demonstrated; however, the mechanism of its therapeutic value remains to be investigated. This study aimed to reveal the potential link between cancer immunotherapy and EDNRA in human tumours. Clinical characteristics and gene expression information were acquired from the Cancer Genome Atlas database. The correlation between EDNRA expression and immune infiltration was analysed by tumour immune estimation resource (TIMER) and tumour-immune system interaction database (TISIDB). EDNRA expression in different cancer types were performed via qPCR. Immunohistochemistry was used to detect the relationships between EDNRA protein and immune checkpoints. The results have founded that EDNRA was differentially expressed in various tumours, and highly associated with patient's age and tumour stage. It is also of high potential prognostic value in predicting patient survival. It has been verified that the EDNRA, JAK-STAT, and TGF-β signalling pathways are involved in cancers. In general, EDNRA positively correlated with immunomodulatory agents, immune cell infiltration, and immunotherapy markers. Immunohistochemical analysis of breast cancer tissues showed that EDNRA was positively correlated with NRP1 expression. Furthermore, patients with low EDNRA levels showed a superior response to immunotherapy. The functional study found that EDNRA expression is upregulated in MDA-MB-231 and HepG2 cells, and knockdown of EDNRA inhibits proliferation and migration of cells. In conclusion, the immunotherapeutic function of EDNRA was elucidated in this study. EDNRA may be an important target in tumour immunotherapy and provide new insights for tumour immunotherapy.
Project description:BackgroundMucosal head and neck squamous cell carcinoma (HNSCC) is often diagnosed at an advanced stage, where the prognosis is poor due to the high rates of recurrence and metastasis. With approximately one million new cases projected in 2024, worldwide mortality of HNSCC is estimated to reach 50% of detected cases the same year. Patients with early-stage tumours showed a 50-60% five-year survival rate in the US. Immune checkpoint inhibitors (ICIs) have shown promising results in prolonging survival in a subset of patients with recurrent or metastatic disease. However, challenges remain, particularly the limited efficacy of PD-1/PD-L1 blockade therapies. PD-L1 protein expression has been shown to be limited in its predictive power for ICI therapies. Emerging evidence shows that intricate characterisation of the tumour microenvironment (TME) is fundamental to understand interacting cells. This study aims to bridge the gap in understanding the tumor microenvironment by identifying distinct spatial patterns of PD-1/PD-L1 interactions and their association with immunotherapy responses in head and neck squamous cell carcinoma (HNSCC).MethodsIn this study, we sought to apply a more nuanced approach to understanding cellular interactions by mapping PD-1/PD-L1 interactions across whole-slide HNSCC tissue samples collected prior to ICI therapy. We used a combination of spatial proteomics (Akoya Biosciences) and an in situ proximity ligation assay (isPLA, Navinci Diagnostics) to visualise PD-1/PD-L1 interactions across cell types and cellular neighbourhoods within the tumour TME.ResultsOur findings indicate the existence of isPLA+ PD-1/PD-L1 interactions between macrophages/CD3 T cell-enriched neighbourhoods and tumour cells at the tumour-stroma boundaries in ICI-resistant tumours. The presence of these dense macrophage-tumour layers, which are either absent or dispersed in responders, indicates a barrier that may restrict immune cell infiltration and promote immune escape mechanisms. In contrast, responders had abundant B and T cell aggregates, predominantly around the tumour edges linked to enhanced immune responses to ICI therapy and better clinical outcomes.ConclusionThis study highlights the utility of isPLA in detecting distinct tumour-immune interactions within the TME, offering new cellular interaction metrics for stratifying and optimising immunotherapy strategies.
Project description:B cell central tolerance is a process through which self-reactive B cells are removed from the B cell repertoire. Self-reactive B cells are generally removed by receptor editing in the bone marrow and by anergy induction in the periphery. IRF8 is a critical transcriptional regulator of immune system development and function. A recent study showed that marginal zone B cell and B1 B cell populations are dramatically increased in IRF8-deficient mice, indicating that there are B cell-developmental defects in the absence of IRF8. In this article, we report that mice deficient for IRF8 produced anti-dsDNA Abs. Using a hen egg lysozyme double-transgenic model, we further demonstrate that B cell anergy was breached in IRF8-deficient mice. Although anergic B cells in the IRF8-proficient background were blocked at the transitional stage of development, anergic B cells in the IRF8-deficient background were able to mature further, which allowed them to regain responses to Ag stimulation. Interestingly, our results show that IRF8-deficient B cells were more sensitive to Ag stimulation and were resistant to Ag-induced cell death. Moreover, our results show that IRF8 was expressed at a high level in the anergic B cells, and an elevated level of IRF8 promoted apoptosis in the transitional B cells. Thus, our findings reveal a previously unrecognized function of IRF8 in B cell anergy induction.
Project description:Recent studies have highlighted a major role for cancer-associated fibroblasts (CAFs) in promoting immunotherapy resistance by excluding T cells from tumours. Recently, we showed that CAFs can be effectively targeted by inhibiting the enzyme NOX4; this 'normalises' CAFs and overcomes immunotherapy resistance. Here we discuss our study and other strategies for CAF targeting.
Project description:To define the global landscape of mRNA changes in anergic B cells, and how this affected by surface IgD, mature CD93-CD23+ HEL-binding B cells were sorted from spleens of independent transgenic mice of the following genotypes: MD4, naïve B cells coexpressing IgM and IgD; MD4:ML5, anergic B cells coexpressing IgM and IgD; MM4, naive B cells expressing only IgM; MM4:ML5, anergic B cells expressing only IgM; DD6, naive B cells expressing only IgD; DD6:ML5, anergic B cells expressing only IgD.
Project description:In Westernized countries, over 1% of the population is allergic to peanuts or tree nuts, which carries a risk of severe allergic reactions. Several studies support the efficacy of peanut oral immunotherapy (OIT) for reducing the clinical sensitivity of affected individuals; however, the mechanisms of this effect are still being characterized. One mechanism that may contribute is the suppression of effector cells, such as basophils. Basophil anergy has been characterized in vitro as a pathway-specific hyporesponsiveness; however, this has not been demonstrated to occur in vivo.To evaluate the hypothesis that basophil anergy occurs in vivo due to chronic allergen exposure in the setting of a clinical oral immunotherapy trial.Samples of peripheral blood were obtained from subjects during a placebo-controlled clinical trial of peanut OIT. Basophil reactivity to in vitro stimulation with peanut allergen and controls was assessed by the upregulation of activation markers, CD63 and CD203c, measured by flow cytometry.The upregulation of CD63 following stimulation of the IgE receptor, either specifically with peanut allergen or non-specifically with anti-IgE antibody, was strongly suppressed by active OIT. However, OIT did not significantly suppress this response in basophils stimulated by the distinct fMLP receptor pathway. In the subset of subjects with egg sensitization, active peanut OIT also suppressed CD63 upregulation in response to stimulation with egg allergen. Allergen OIT also suppressed the upregulation of CD203c including in response to stimulation with IL-3 alone.Peanut OIT induces a hyporesponsive state in basophils that is consistent with pathway-specific anergy previously described in vitro. This suggests the hypothesis that effector cell anergy could contribute to clinical desensitization.
Project description:Tumour-derived extracellular vesicles (EVs) participate in tumour progression by deregulating various physiological processes including angiogenesis and inflammation. Here we report that EVs released by endothelial cells in a mammary tumour environment participate in the recruitment of macrophages within the tumour, leading to an immunomodulatory phenotype permissive for tumour growth. Using RNA-Seq approaches, we identified several microRNAs (miRNAs) found in endothelial EVs sharing common targets involved in the regulation of the immune system. To further study the impact of these miRNAs in a mouse tumour model, we focused on three miRNAs that are conserved between humans and mouse, that is, miR-142-5p, miR-183-5p and miR-222-3p. These miRNAs are released from endothelial cells in a tumour microenvironment and are transferred via EVs to macrophages. In mouse mammary tumour models, treatment with EVs enriched in these miRNAs leads to a polarization of macrophages toward an M2-like phenotype, which in turn promotes tumour growth.
Project description:A wide range of cancer immunotherapy approaches has been developed including non-specific immune-stimulants such as cytokines, cancer vaccines, immune checkpoint inhibitors (ICIs), and adoptive T cell therapy. Among them, ICIs are the most commonly used and intensively studied. Since 2011, these drugs have received marketing authorisation for melanoma, lung, bladder, renal, and head and neck cancers, with remarkable and long-lasting treatment response in some patients. The novel mechanism of action of ICIs, with immune and T cell activation, leads to unusual patterns of response on imaging, with the advent of so-called pseudoprogression being more pronounced and frequently observed when compared to other anticancer therapies. Pseudoprogression, described in about 2-10% of patients treated with ICIs, corresponds to an increase of tumour burden and/or the appearance of new lesions due to infiltration by activated T cells before the disease responds to therapy. To overcome the limitation of response evaluation criteria in solid tumors (RECIST) to assess these specific changes, new imaging criteria-so-called immune-related response criteria and then immune-related RECIST (irRECIST)-were proposed. The major modification involved the inclusion of the measurements of new target lesions into disease assessments and the need for a 4-week re-assessment to confirm or not confirm progression. The RECIST working group introduced the new concept of "unconfirmed progression", into the irRECIST. This paper reviews current immunotherapeutic approaches and summarises radiologic criteria to evaluate new patterns of response to immunotherapy. Furthermore, imaging features of immunotherapy-related adverse events and available predictive biomarkers of response are presented.