Project description:As part of our efforts to develop rhenium-oxo corroles as photosensitizers for oxygen sensing and photodynamic therapy, we investigated the potential β-perhalogenation of five ReO meso-tris(para-X-phenyl)corroles, Re[TpXPC](O) (X = CF3, H, F, CH3, and OCH3), with elemental chlorine and bromine. With Cl2, β-octachlorinated products Re[Cl8TpXPC](O) were rapidly obtained for X = CF3, H, and CH3, but X = OCH3 resulted in overchlorination on the meso-aryl groups. Full β-octabromination proved slower relative to Cu and Ir corroles, but the desired Re[Br8TpXPC](O) products were finally obtained for X = H and F after a week at room temperature. For X = CH3 and OCH3, these conditions led to undecabrominated products Re[Br11TpXPC](O). Compared to the β-unsubstituted starting materials, the β-octahalogenated products were found to exhibit sharp 1H NMR signals at room temperature, indicating that the aryl groups are locked in place by the β-halogens, and substantially redshifted Soret and Q bands. Single-crystal X-ray structures of Re[Cl8TpCF3PC](O), Re[Cl8TpCH3PC](O), and Re[Br8TpFPC](O) revealed mild saddling for one Cl8 structure and the Br8 structure. These structural variations, however, appear too insignificant to explain the slowness of the β-octabromination protocols, which seems best attributed to the deactivating influence of the high-valent Re center.
Project description:Herein we demonstrate a synthetic protocol for the regioselective thiocyanation of corroles. To the best of our knowledge, thiocyanato appended corrole has never been reported earlier. The resulting thiocyanato appended corrole turned out to be a good corrole based precursor for the facile synthesis of thiol protected gold nanoparticles (Au NPs). The ligand system acts as a good bidentate framework and passivates the gold surface. A strong electronic interaction between the corrole and the gold nanoparticles is manifested by their unique photo physical properties and it also confirms that the binding through β-substitutions has a more pronounced effect even though the corrole rings are face-off to the gold surface.
Project description:Metallocorroles involving 5d transition metals are currently of interest as near-IR phosphors and as photosensitizers for oxygen sensing and photodynamic therapy. Their syntheses, however, are often bedeviled by capricious and low-yielding protocols. Against this backdrop, we describe rhenium-imido corroles, a new class of 5d metallocorroles, synthesized simply and in respectable (∼30%) yields via the interaction of a free-base corrole, Re2(CO)10, K2CO3, and aniline in 1,2,4-trichlorobenzene at ∼190 °C in a sealed vial under strict anaerobic conditions. The generality of the method was shown by the synthesis of six derivatives, including those derived from meso-tris(pentafluorophenyl)corrole, H3[TPFPC], and five different meso-tris(p-X-phenyl)corroles, H3[TpXPC], where X = CF3, F, H, CH3, OCH3. Single-crystal X-ray structures obtained for two of the complexes, Re[TpFPC](NPh) and Re[TpCF3PC](NPh), revealed relatively unstrained equatorial Re-N distances of ∼2.00 Å, a ∼ 0.7-Å displacement of the Re from the mean plane of the corrole nitrogens, and an Re-Nimido distance of ∼1.72 Å. Details of the corrole skeletal bond distances, diamagnetic 1H NMR spectra, relatively substituent-independent Soret maxima, and electrochemical HOMO-LUMO gaps of ∼2.2 V all indicated an innocent corrole macrocycle. Surprisingly, unlike several other classes of 5d metallocorroles, the Re-imido complexes proved nonemissive in solution at room temperature and also failed to sensitize singlet oxygen formation, indicating rapid radiationless deactivation of the triplet state, presumably via the rapidly rotating axial phenyl group. By analogy with other metal-oxo and -imido corroles, we remain hopeful that the Re-imido group will prove amenable to further elaboration and thereby contribute to the development of a somewhat challenging area of coordination chemistry.
Project description:A series of novel mono- and di-substituted N-n-butyl-1,8-naphthalimide derivatives were synthesized simultaneously via a three-step reaction. The single crystal structure of N-n-butyl-4-[N',N'-bis(2',4'-dichlorobenzoyl)ethylamino]-1,8-naphthalimide (3f) was determined. The UV-vis and fluorescence properties of compound 3f were investigated. The 3f showed highly selective and sensitive fluorescence changes response towards Pb2+. A titration of monomer with Pb2+ ion was performed. When Pb2+ ion concentration increased from 0 to 10 eq., the fluorescent intensity of 3f decreased from 199.97 to 48.21. The pH effect on 3f showed that it is stable in a wide range of pH. The results indicated that 3f might be a probe molecule for Pb2+.
Project description:A series of stable Pt(IV) corrole complexes with the general formula PtIV[TpXPC](m/p-C6H4CN)(py), where TpXPC3- is the trianion of a tris(p-X-phenyl)corrole and X = CF3, H, and CH3, has been synthesized, affording key physicochemical data on a rare and elusive class of metallocorroles. Single-crystal X-ray structures of two of the complexes revealed very short equatorial Pt-N distances of 1.94-1.97 Å, an axial Pt-C distance of ∼2.03 Å, and an axial Pt-N distance of ∼2.22 Å. The complexes exhibit Soret maxima at ∼430 nm, which are essentially independent of the meso-aryl para substituents, and strong Q bands with the most intense peak at 595-599 nm. The substituent-independent Soret maxima are consistent with an innocent PtIV-corrole3- description for the complexes. The low reduction potentials (-1.45 ± 0.08 V vs saturated calomel reference electrode) also support a highly stable Pt(IV) ground state as opposed to a noninnocent corrole•2- description. The reductions, however, are irreversible, which suggests that they involve concomitant cleavage of the Pt-aryl bond. Unlike Pt(IV) porphyrins, two of the complexes, PtIV[TpXPC](m-C6H4CN)(py) (X = CF3 and CH3), were found to exhibit room-temperature near-IR phosphorescence with emission maxima at 813 and 826 nm, respectively. The quantum yield of ∼0.3% is comparable to those observed for six-coordinate Ir(III) corroles.
Project description:A copper triflate-mediated approach to access copper complexes of pyrrole-substituted corroles from the reaction of 1,9-diformyldipyrromethanes and an excess amount of pyrrole is presented for the first time. This procedure is a simple and efficient way for the preparation of corroles with a polymerizable substituent on meso-positions.
Project description:Graphene is a single-atom-thick two-dimensional carbon nanosheet with outstanding chemical, electrical, material, optical, and physical properties due to its large surface area, high electron mobility, thermal conductivity, and stability. These extraordinary features of graphene make it a key component for different applications in the biosensing and imaging arena. However, the use of graphene alone is correlated with certain limitations, such as irreversible self-agglomerations, less colloidal stability, poor reliability/repeatability, and non-specificity. The addition of gold nanostructures (AuNS) with graphene produces the graphene-AuNS hybrid nanocomposite which minimizes the limitations as well as providing additional synergistic properties, that is, higher effective surface area, catalytic activity, electrical conductivity, water solubility, and biocompatibility. This review focuses on the fundamental features of graphene, the multidimensional synthesis, and multipurpose applications of graphene-Au nanocomposites. The paper highlights the graphene-gold nanoparticle (AuNP) as the platform substrate for the fabrication of electrochemical and surface-enhanced Raman scattering (SERS)-based biosensors in diverse applications as well as SERS-directed bio-imaging, which is considered as an emerging sector for monitoring stem cell differentiation, and detection and treatment of cancer.
Project description:This manuscript unveils the synthesis of 2H-thiazolo[4,5-d][1,2,3]triazole (ThTz), an unprecedented [5-5]-fused heteroaromatic system, and established a scalable synthetic procedure for producing large quantities of the ThTz ring bearing a sulfone group on the thiazole ring. The sulfone moiety proves to be a versatile reactive tag, facilitating diverse transformations such as SNAr reactions, metal-catalyzed couplings, and radical-based alkylations. Furthermore, functionalization of the triazole ring highlights the potential of this newly developed heteroaromatic compound as a valuable heteroaryl building block, promoting scaffold hopping strategies in medicinal chemistry.
Project description:For the copolymerization of non-conjugated olefins and maleimides, it is known that under certain conditions periodic ABA monomer sequences are formed. In this work, such a copolymerization is used to create polymers which have defined (periodic) monomer sequences and can be functionalized after polymerization. The copolymerization of pentafluorophenol (PFP) active esters of 4-pentenoic acid and perillic acid with N-phenyl maleimide (PhMI) was studied in 1,2-dichloroethane (DCE) and 1,1,1,3,3,3-hexafluoro-2-phenyl-2-propanol (HFPP). In DCE and for the copolymerization of the PFP ester of 4-pentenoic acid and PhMI in HFPP, polymers were formed where the active esters were separated by at least one PhMI unit. The average number of separating PhMI units can be controlled by varying the feed ratio of the monomers. For the copolymerization of the PFP ester of perillic acid in HFPP, a preference for the formation of periodic copolymers was observed, where active esters were preferably separated from each other by a maximum of two PhMI moieties. Therefore, the copolymerization of said active ester containing monomers with PhMI provides a platform to create polymers in which reactive moieties are distributed along the polymer chain in different fashions. The active esters in the non-conjugated vinyl monomers could be used in a post-polymerization functionalization step to create functionalized polymers with defined monomer sequences in a modular way.
Project description:The development of an effective and selective chemosensor for CN- ions has become the need of the hour due to their hazardous impact on the environment and humans. Herein, we report the synthesis of two novel chemosensors, IF-1 and IF-2 based on 3-hydroxy-2-naphthohydrazide and aldehyde derivatives that have shown selective sensing of CN- ions. IF-2 exhibited exclusive binding with CN- ions that is further confirmed by the binding constant value of 4.77 × 104 M-1 with a low detection limit (8.2 μM). The chemosensory potential is attributed to deprotonation of the labile Schiff base center by CN- ions that results in a color change from colorless to yellow as visible by the naked eye. Accompanying this, a DFT study was also performed in order to find the interaction between the sensor (IF-1) and its ions (F-). A notable charge transfer from 3-hydroxy-2-naphthamide to 2,4-di-tert-butyl-6-methylphenol, was indicated by the FMO analysis. The QTAIM analysis revealed that in the complex compound, the strongest pure hydrogen-hydrogen bonding was observed between H53 and H58, indicated by a ρ value of +0.017807. Due to its selective response, IF-2 can be successfully used for making test strips for the detection of CN- ions.