Project description:(1) Background: Gangliogliomas comprise a small number of brain tumors. They usually present as World Health Organization (WHO) grade I, and they delineate on gadolinium-enhanced MRI; the surgical goal is wide radical resection, and the course thereafter is usually benign. Fluorescein sodium (FL) tends to accumulate in areas with altered blood-brain barrier (BBB). Thus far, the results provided by prospective and retrospective studies show that the utilization of this fluorophore may be associated with better visualization and improvement of resection for several tumors of the central nervous system. In this study, we retrospectively studied the effect of fluorescein sodium on visualization and resection of gangliogliomas. (2) Methods: Surgical databases in three neurosurgical departments (Regensburg University Hospital; Besta Institute, Milano, Italy; and Liv Hospital, Istanbul, Turkey), with approval by the local ethics committee, were retrospectively reviewed to find gangliogliomas surgically removed by a fluorescein-guided technique by the aid of a dedicated filter on the surgical microscope from April 2014 to February 2020. Eighteen patients (13 women, 5 men; mean age 22.9 years, range 3 to 78 years) underwent surgical treatment for gangliogliomas during 19 operations. Fluorescein was intravenously injected (5 mg/kg) after general anesthesia induction. Tumors were removed using a microsurgical technique with the YELLOW 560 Filter (YE560) (KINEVO/PENTERO 900, Carl Zeiss Meditec, Oberkochen, Germany). (3) Results: No side effects related to fluorescein occurred. In all tumors, contrast enhancement on preoperative MRI correlated with bright yellow fluorescence during the surgical procedure (17 gangliogliomas WHO grade I, 1 ganglioglioma WHO grade II). Fluorescein was considered helpful by the operating surgeon in distinguishing tumors from viable tissue in all cases (100%). Biopsy was intended in two operations, and subtotal resection was intended in one operation. In all other operations considered preoperatively eligible, gross total resection (GTR) was achieved in 12 out of 16 (75%) instances. (4) Conclusions: The use of FL and YE560 is a readily available method for safe fluorescence-guided tumor resection, possibly visualizing tumor margins intraoperatively similar to contrast enhancement in T1-weighted MRI. Our data suggested a positive effect of fluorescein-guided surgery on intraoperative visualization and extent of resection during resection of gangliogliomas.
Project description:It is commonly reported that maximizing surgical resection of contrast-enhancing regions in patients with glioblastoma improves overall survival. Efforts to achieve an improved rate of resection have included several tools: among those, the recent widespread of fluorophores. Sodium fluorescein is an unspecific, vascular dye which tends to accumulate in areas with an altered blood-brain barrier. In this retrospective analysis of patients prospectively enrolled in the FLUOCERTUM study, we aimed to assess the role of fluorescein-guided surgery on surgical radicality, survival, and morbidity. A retrospective review based on 93 consecutively and prospectively enrolled IDH wild-type glioblastoma patients (2016-2022) was performed; fluorescence characteristics, rate of resection, clinical outcome, and survival were analyzed. No side effect related to fluorescein occurred; all of the tumors presented a strong yellow-green enhancement and fluorescein was judged fundamental in distinguishing tumors from viable tissue in all cases. Gross total resection was achieved in 77 cases out of 93 patients (82.8%). After a mean follow-up time of 17.4 months (3-78 months), the median progression-free survival was 12 months, with a PFS-6 and PFS-12 of 94.2% and 50%, respectively, whereas median overall survival was estimated to be 16 months; survival at 6, 12, and 24 months was 91.8%, 72.3%, and 30.1%, respectively. Based on these results, we can assert that the fluorescein-guided technique is a safe and valuable method for patients harboring a newly diagnosed, untreated glioblastoma.
Project description:PurposeProspective data suggested a superiority of intraoperative MRI (iMRI) over 5-aminolevulinic acid (5-ALA) for achieving complete resections of contrast enhancement in glioblastoma surgery. We investigated this hypothesis in a prospective clinical trial and correlated residual disease volumes with clinical outcome in newly diagnosed glioblastoma.MethodsThis is a prospective controlled multicenter parallel-group trial with two center-specific treatment arms (5-ALA and iMRI) and blinded evaluation. The primary end point was complete resection of contrast enhancement on early postoperative MRI. We assessed resectability and extent of resection by an independent blinded centralized review of preoperative and postoperative MRI with 1-mm slices. Secondary end points included progression-free survival (PFS) and overall survival (OS), patient-reported quality of life, and clinical parameters.ResultsWe recruited 314 patients with newly diagnosed glioblastomas at 11 German centers. A total of 127 patients in the 5-ALA and 150 in the iMRI arm were analyzed in the as-treated analysis. Complete resections, defined as a residual tumor ≤0.175 cm³, were achieved in 90 patients (78%) in the 5-ALA and 115 (81%) in the iMRI arm (P = .79). Incision-suture times (P < .001) were significantly longer in the iMRI arm (316 v 215 [5-ALA] minutes). Median PFS and OS were comparable in both arms. The lack of any residual contrast enhancing tumor (0 cm³) was a significant favorable prognostic factor for PFS (P < .001) and OS (P = .048), especially in methylguanine-DNA-methyltransferase unmethylated tumors (P = .006).ConclusionWe could not confirm superiority of iMRI over 5-ALA for achieving complete resections. Neurosurgical interventions in newly diagnosed glioblastoma shall aim for safe complete resections with 0 cm³ contrast-enhancing residual disease, as any other residual tumor volume is a negative predictor for PFS and OS.
Project description:BACKGROUND:Spinal cord and brain stem lesions require a judicious approach with an optimized trajectory due to a clustering of functions on their surfaces. Intraoperative mapping helps locate function. To confidently locate such lesions, neuronavigation alone lacks the desired accuracy and is of limited use in the spinal cord. OBJECTIVE:To evaluate the clinical value of fluoresceins for initial delineation of such critically located lesions. METHODS:We evaluated fluorescein guidance in the surgical resection of lesions with blood-brain barrier disruption demonstrating contrast enhancement in magnet resonance imaging in the spinal cord and in the brain stem in 3 different patients. Two patients harbored a diffuse cervical and thoracic spinal cord lesion, respectively. Another patient suffered metastatic lesions in the brain stem and at the floor of the fourth ventricle. Low-dose fluorescein (4 mg/kg body weight) was applied after anesthesia induction and visualized using the Zeiss Pentero 900 Yellow560 filter (Carl Zeiss, Oberkochen, Germany). RESULTS:Fluorescein was helpful for locating lesions and for defining the best possible trajectory. During resection, however, we found unspecific propagation of fluorescein within the brain stem up to 6 mm within 3 h after application. As these lesions were otherwise distinguishable from surrounding tissue, monitoring resection was not an issue. CONCLUSION:Fluorescein guidance is a feasible tool for defining surgical entry zones when aiming for surgical removal of spinal cord and brain stem lesions. Unselective fluorescein extravasation cautions against using such methodology for monitoring completeness of resection. Providing the right timing, a window of pseudoselectivity could increase fluoresceins' clinical value in these cases.
Project description:BackgroundComplete resection of malignant gliomas is hampered by the difficulty in distinguishing tumor cells at the infiltration zone. Fluorescence guidance with 5-ALA assists in reaching this goal. Using hyperspectral imaging, previous work characterized five fluorophores' emission spectra in most human brain tumors.MethodsIn this paper, the effectiveness of these five spectra was explored for different tumor and tissue classification tasks in 184 patients (891 hyperspectral measurements) harboring low- (n = 30) and high-grade gliomas (n = 115), non-glial primary brain tumors (n = 19), radiation necrosis (n = 2), miscellaneous (n = 10) and metastases (n = 8). Four machine-learning models were trained to classify tumor type, grade, glioma margins, and IDH mutation.ResultsUsing random forests and multilayer perceptrons, the classifiers achieve average test accuracies of 84-87%, 96.1%, 86%, and 91% respectively. All five fluorophore abundances vary between tumor margin types and tumor grades (p < 0.01). For tissue type, at least four of the five fluorophore abundances are significantly different (p < 0.01) between all classes.ConclusionsThese results demonstrate the fluorophores' differing abundances in different tissue classes and the value of the five fluorophores as potential optical biomarkers, opening new opportunities for intraoperative classification systems in fluorescence-guided neurosurgery.
Project description:BackgroundGross total resection (GTR) of contrast-enhancing tumor is associated with increased survival in primary glioblastoma. Recently, there has been increasing interest in performing supratotal resections (SpTRs) for glioblastoma.ObjectiveTo address the published results, which have varied in part due to lack of consensus on the definition and appropriate use of SpTR.MethodsA crowdsourcing approach was used to survey 21 neurosurgical oncologists representing 14 health systems nationwide. Participants were presented with 11 definitions of SpTR and asked to rate the appropriateness of each definition. Participants reviewed T1-weighed postcontrast and fluid-attenuated inversion-recovery magnetic resonance imaging for 22 anatomically distinct glioblastomas. Participants were asked to assess the tumor location's eloquence, the perceived equipoise of enrolling patients in a randomized trial comparing gross total to SpTR, and their personal treatment plans.ResultsMost neurosurgeons surveyed (n = 18, 85.7%) agree that GTR plus resection of some noncontrast enhancement is an appropriate definition for SpTR. Overall, moderate inter-rater agreement existed regarding eloquence, equipoise, and personal treatment plans. The 4 neurosurgeons who had performed >10 SpTRs for glioblastomas in the past year were more likely to recommend it as their treatment plan (P < .005). Cases were divided into 3 anatomically distinct groups based upon perceived eloquence. Anterior temporal and right frontal glioblastomas were considered the best randomization candidates.ConclusionWe established a consensus definition for SpTR of glioblastoma and identified anatomically distinct locations deemed most amenable to SpTR. These results may be used to plan prospective trials investigating the potential clinical utility of SpTR for glioblastoma.
Project description:Resistance to genotoxic therapies and tumor recurrence are hallmarks of glioblastoma (GBM), an aggressive brain tumor. Here, we explore functional drivers of post-treatment recurrent GBM. By conducting genome-wide CRISPR-Cas9 knockout screens in patient-derived GBM models, we uncover distinct genetic dependencies in recurrent tumor cells absent in their patient-matched primary predecessors, accompanied by increased mutational burden and differential transcript and protein expression. These analyses map a multilayered genetic response to drive tumor recurrence, identifying protein tyrosine phosphatase 4A2 (PTP4A2) as a novel modulator of self-renewal, proliferation and tumorigenicity at GBM recurrence. Genetic perturbation or small molecule inhibition of PTP4A2 activity represses axon guidance activity through a dephosphorylation axis with roundabout guidance receptor 1 (ROBO1), exploiting a functional dependency on ROBO signaling. Importantly, engineered anti-ROBO1 single-domain antibodies mimic effects of PTP4A2 inhibition. Since a pan-PTP4A inhibitor was limited by poor penetrance across the blood brain barrier (BBB) in vivo, a second-generation chimeric antigen receptor (CAR)-T cell therapy was engineered against ROBO1 that elicits specific and potent anti-tumor responses in vivo. A single dose of anti-ROBO1 CAR-T cells doubles median survival in patient-derived xenograft (PDX) models of recurrent glioblastoma, and also eradicates tumors in ~50% of mice in PDX models of adult lung-to-brain metastases and pediatric relapsed medulloblastoma. We conclude that functional reprogramming drives tumorigenicity and dependence on a multi-targetable PTP4A-ROBO1 signaling axis at GBM recurrence, with potential in other malignant brain tumors.
Project description:The application of indocyanine green (ICG) has recently been reported to aid in the resection of endometriosis in the bladder wall and/or involving the ureters. A symptomatic 41-year-old patient with dysmenorrhea and pollakisuria was referred to our tertiary center. Imaging revealed a 1.5-2 cm intramural endometriotic nodule in the posterior bladder wall. She was planned for robotic resection of the endometriotic nodule, under ICG guidance, together with a hysterectomy. After placement of double-J ureteral stents and clamping the bladder, perforation of the bladder mucosa could be avoided whilst performing a circumferential resection of the nodule. By clamping the bladder catheter after instillation of ICG, both the bladder wall thickness and ureters could be visualized with near-infrared imaging during robotic resection of the endometriotic nodule and hysterectomy. With the surgical approach described here, endometriotic nodules/tissue can be removed precisely with enlarged vision at the robot console, safely, and completely without damaging adjacent tissues.
Project description:ObjectiveThe authors' goal was to use a multicenter, observational cohort study to determine whether supramarginal resection (SMR) of FLAIR-hyperintense tumor beyond the contrast-enhanced (CE) area influences the overall survival (OS) of patients with isocitrate dehydrogenase-wild-type (IDH-wt) glioblastoma after gross-total resection (GTR).MethodsThe medical records of 888 patients aged ≥ 18 years who underwent resection of GBM between January 2011 and December 2017 were reviewed. Volumetric measurements of the CE tumor and surrounding FLAIR-hyperintense tumor were performed, clinical variables were obtained, and associations with OS were analyzed.ResultsIn total, 101 patients with newly diagnosed IDH-wt GBM who underwent GTR of the CE tumor met the inclusion criteria. In multivariate analysis, age ≥ 65 years (HR 1.97; 95% CI 1.01-2.56; p < 0.001) and contact with the lateral ventricles (HR 1.59; 95% CI 1.13-1.78; p = 0.025) were associated with shorter OS, but preoperative Karnofsky Performance Status ≥ 70 (HR 0.47; 95% CI 0.27-0.89; p = 0.006), MGMT promotor methylation (HR 0.63; 95% CI 0.52-0.99; p = 0.044), and increased percentage of SMR (HR 0.99; 95% CI 0.98-0.99; p = 0.02) were associated with longer OS. Finally, 20% SMR was the minimum percentage associated with beneficial OS (HR 0.56; 95% CI 0.35-0.89; p = 0.01), but > 60% SMR had no significant influence (HR 0.74; 95% CI 0.45-1.21; p = 0.234).ConclusionsSMR is associated with improved OS in patients with IDH-wt GBM who undergo GTR of CE tumor. At least 20% SMR of the CE tumor was associated with beneficial OS, but greater than 60% SMR had no significant influence on OS.