A Remote Assay for Measuring Canine Platelet Activation and the Inhibitory Effects of Antiplatelet Agents.
Ontology highlight
ABSTRACT: Antiplatelet medications are increasingly used in dogs. Remote analysis of platelet activity is challenging, limiting assessment of antiplatelet drug efficacy.To evaluate a method used in humans for stimulation and remote analysis of canine platelet activity.Forty-five dogs of various ages without a coagulopathy or thrombocytopenia. Six were receiving antiplatelet medication.Prospective observational study. Platelets were stimulated with combinations of arachidonic acid (AA) and epinephrine (Epi) or adenosine diphosphate (ADP) and the thromboxane A2 -mimetic U46619 (U4). PAMFix was added to the blood samples to facilitate delayed analysis of platelet activity. Activity was assessed by flow cytometric measurement of surface P-selectin (CD62P) expression.Canine platelets could be stimulated with both AA/Epi and ADP/U4. The levels of P-selectin were significantly greater than paired, unstimulated samples (P < 0.001). Inhibition of P-selectin expression occurred after this stimulation by adding antiplatelet drugs in vitro. The efficacy of antiplatelet drugs in samples from treated dogs was also measurable ex vivo using this method. Delayed analysis of platelet activity at time points up to 22 days demonstrated excellent correlation between respective mf values at each time point (r2 = 0.92, P < 0.0001).This study evaluated a new method to remotely assess canine platelet activity. It shows that PAMFix can be used for this purpose. This provides opportunities to interrogate the inhibitory action of antiplatelet drugs in clinical settings.
Journal of veterinary internal medicine 20171202 1
<h4>Background</h4>Antiplatelet medications are increasingly used in dogs. Remote analysis of platelet activity is challenging, limiting assessment of antiplatelet drug efficacy.<h4>Hypothesis/objectives</h4>To evaluate a method used in humans for stimulation and remote analysis of canine platelet activity.<h4>Animals</h4>Forty-five dogs of various ages without a coagulopathy or thrombocytopenia. Six were receiving antiplatelet medication.<h4>Methods</h4>Prospective observational study. Platelet ...[more]
Project description:BackgroundDuring long-term antiplatelet agents (APAs) administration, patients with thrombotic diseases take a fairly high risk of life-threatening bleeding, especially when in need of urgent surgery. Rapid functional reversal of APAs remains an issue yet to be efficiently resolved by far due to the lack of any specific reversal agent in the clinic, which greatly restricts the use of APAs.MethodsFlow cytometry analysis was first applied to assess the dose-dependent reversal activity of platelet-mimicking perfluorocarbon-based nanosponges (PLT-PFCs) toward ticagrelor. The tail bleeding time of mice treated with APAs followed by PLT-PFCs was recorded at different time points, along with corresponding pharmacokinetic analysis of ticagrelor and tirofiban. A hemorrhagic transformation model was established in experimental stroke mice with thrombolytic/antiplatelet therapy. Magnetic resonance imaging was subsequently applied to observe hemorrhage and thrombosis in vivo. Further evaluation of the spontaneous clot formation activity of PLT-PFCs was achieved by clot retraction assay in vitro.ResultsPLT-PFCs potently reversed the antiplatelet effect of APAs by competitively binding with APAs. PLT-PFCs showed high binding affinity comparable to fresh platelets in vitro with first-line APAs, ticagrelor and tirofiban, and efficiently reversed their function in both tail bleeding and postischemic-reperfusion models. Moreover, the deficiency of platelet intrinsic thrombotic activity diminished the risk of thrombogenesis.ConclusionsThis study demonstrated the safety and effectiveness of platelet-mimicking nanosponges in ameliorating the bleeding risk of different APAs, which offers a promising strategy for the management of bleeding complications induced by antiplatelet therapy.
Project description:Activated platelets are involved in blood coagulation by exposing phosphatidylserine (PS), which serves as a substrate for assembling coagulation complexes. Platelets accelerate fibrin formation and thrombin generation, two final reactions of the coagulation cascade. We investigated the effects of antiplatelet drugs on platelet impact in these reactions and platelet ability to expose PS. Washed human platelets were incubated with acetylsalicylic acid (ASA), ticagrelor, ASA in combination with ticagrelor, ruciromab (glycoprotein IIb-IIIa antagonist), or prostaglandin E1 (PGE1). Platelets were not activated or activated by collagen and sedimented in multiwell plates, and plasma was added after supernatant removal. Fibrin formation (clotting) was monitored in a recalcification assay by light absorbance and thrombin generation in a fluorogenic test. PS exposure was assessed by annexin V staining using flow cytometry. Ticagrelor (alone and in combination with ASA), ruciromab, and PGE1, but not ASA, prolonged the lag phase and decreased the maximum rate of plasma clotting and decreased the peak and maximum rate of thrombin generation. Inhibition was observed when platelets were not treated with exogenous agonists (activation by endogenous thrombin) and pretreated with collagen. Ticagrelor (alone and in combination with ASA), ruciromab, and PGE1, but not ASA, decreased PS exposure on washed platelets activated by thrombin and by thrombin + collagen. PS exposure on activated platelets in whole blood was lower in patients with acute coronary syndrome receiving ticagrelor + ASA in comparison with donors free of medications. These results indicate that antiplatelet drugs are able to suppress platelet coagulation activity not only in vitro but also after administration to patients.
Project description:The purpose of this study was to identify changes in platelet mRNA that result from exposure to antiplatelet therapy. A total of 84 healthy volunteers were recruited into a longitudinal study of various antiplatelet exposures with 58 completing all study visits. This was a 5 visit study where each visit was separated by ~ 4 weeks. At each Visit purified platelets using a CD45 negative selection protocol was performed in addition to platelet function testing using light transmittance aggregometry (ADP, EPI, and Collagen) and PFA100 (Col/EPI). After the baseline visit (V1), participants were randomized to receive 81mg/day or 325mg/day aspirin x 4 weeks followed by Visit 2. Participants then crossed over to the alternative dose of aspirin for 4 weeks followed by Visit 3. Between Visits 3 and 4 participants washed out their aspirin for 4 weeks. The final exposure was ticagrelor 90mg twice daily x 4 weeks until Visit 5.
Project description:Platelets are the cornerstone of hemostasis. However, their exaggerated aggregation induces deleterious consequences. In several diseases, such as infectious endocarditis and sepsis, the interaction between platelets and bacteria leads to platelet aggregation. Despite platelet involvement, no antiplatelet therapy is currently recommended in these infectious diseases. We aimed here, to evaluate, in vitro, the effect of antiplatelet drugs on platelet aggregation induced by two of the bacterial pathogens most involved in infectious endocarditis, Staphylococcus aureus and Streptococcus sanguinis. Blood samples were collected from healthy donors (n = 43). Treated platelet rich plasmas were incubated with three bacterial strains of each species tested. Platelet aggregation was evaluated by Light Transmission Aggregometry. CD62P surface exposure was evaluated by flow cytometry. Aggregate organizations were analyzed by scanning electron microscopy. All the strains tested induced a strong platelet aggregation. Antiplatelet drugs showed distinct effects depending on the bacterial species involved with different magnitude between strains of the same species. Ticagrelor exhibited the highest inhibitory effect on platelet activation (p <0.001) and aggregation (p <0.01) induced by S. aureus. In the case of S. sanguinis, platelet activation and aggregation were better inhibited using the combination of both aspirin and ticagrelor (p <0.05 and p <0.001 respectively). Aggregates ultrastructure and effect of antiplatelet drugs observed by scanning electron microscopy depended on the species involved. Our results highlighted that the effect of antiplatelet drugs depended on the bacterial species involved. We might recommend therefore to consider the germ involved before introduction of an optimal antiplatelet therapy.
Project description:Low-density lipoprotein (LDL) contributes to atherogenesis and cardiovascular disease through interactions with peripheral blood cells, especially platelets. However, mechanisms by which LDL affects platelet activation and atherothrombosis, and how to best therapeutically target and safely prevent such responses remain unclear. Here, we investigate how oxidized low-density lipoprotein (oxLDL) enhances glycoprotein VI (GPVI)-mediated platelet hemostatic and procoagulant responses, and how traditional and emerging antiplatelet therapies affect oxLDL-enhanced platelet procoagulant activity ex vivo. Human platelets were treated with oxLDL and the GPVI-specific agonist, crosslinked collagen-related peptide, and assayed for hemostatic and procoagulant responses in the presence of inhibitors of purinergic receptors (P2YR), cyclooxygenase (COX), and tyrosine kinases. Ex vivo, oxLDL enhanced GPVI-mediated platelet dense granule secretion, α-granule secretion, integrin activation, thromboxane generation and aggregation, as well as procoagulant phosphatidylserine exposure and fibrin generation. Studies of washed human platelets, as well as platelets from mouse and nonhuman primate models of hyperlipidemia, further determined that P2YR antagonists (eg, ticagrelor) and Bruton tyrosine kinase inhibitors (eg, ibrutinib) reduced oxLDL-mediated platelet responses and procoagulant activity, whereas COX inhibitors (eg, aspirin) had no significant effect. Together, our results demonstrate that oxLDL enhances GPVI-mediated platelet procoagulant activity in a manner that may be more effectively reduced by P2YR antagonists and tyrosine kinase inhibitors compared with COX inhibitors.
Project description:Background and aimsProprotein convertase subtilisin/kexin type 9 (PCSK9) levels could predict cardiovascular event in patients with well-controlled LDL-C levels, suggesting an LDL-independent mechanism of PCSK9 on the cardiovascular system. Accumulating evidence suggests PCSK9 might be associated with increased platelet reactivity. This study aimed to assess the relationship between PCSK9 levels and platelet reactivity in subjects not taking statins or antiplatelet agents.MethodsA cross-sectional study was conducted to investigate the independent contribution of PCSK9 to platelet activity by controlling for the potential confounding factors. The study population included 89 subjects from a health examination centre who underwent routine annual health check-ups or had an examination before a selective operation. Subjects taking statins or antiplatelet agents were excluded. Adenosine diphosphate (ADP)-induced platelet aggregation was determined by PL-11 platelet analyzer using impedance aggregometry and plasma PCSK9 levels were determined using an ELISA. Serum Lipid profile was assessed by measuring the concentration of total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and triglyceride (TG), with low-density lipoprotein cholesterol (LDL-C) being directly measured using enzymatic techniques. The association between PCSK9 and platelet reactivity was investigated.ResultsThe study subjects were composed of 53 males and 36 females with an average age of 55 (±11) years old. The univariate correlation analysis showed significant correlation between ADP-induced maximal aggregation rate (MAR) and PCSK9 (r = 0.55, p < 0.001) as well as TC (r = 0.23, p = 0.028), LDL-C (r = 0.27, p < 0.001), and PLT (r = 0.31, p = 0.005). Being male (41.2% vs. 46.6, p = 0.04) and smoking (37.4 vs. 46.2%, p = 0.016) were associated with lower ADP-induced MAR than being female and non-smoking. However, there is no correlation between PCSK9 and AA-induced platelet maximal aggregation rate (r = 0.17, p = 0.12). Multiple regression analysis suggested that PCSK9 contributed independently to ADP-induced maximal aggregation rate (β = 0.08, p = 0.004) after controlling for the effect of TC, LDL-C, PLT, being male, and smoking.ConclusionsPCSK9 is positively associated with platelet reactivity, which may partly account for the beneficial effect of PCSK9 inhibition in reducing the risk of major adverse cardiovascular events after acute coronary syndrome (ACS).
Project description:BackgroundThe ability to measure changes in platelet reactivity is important to identify novel aspects of platelet biology and develop targeted therapeutics to prevent bleeding or thrombosis. Current platelet function testing allows for single agonist analysis at a time. The ability to phenotype platelets in a single assay with multiple agonists and adhesion substrates could yield more insights into altered pathways than are feasible with current approaches. We hypothesized platelet electrical resistance (PER) could be used for more comprehensive phenotyping of platelets.MethodsPlatelets were isolated from male and female healthy donors (age 39.6 ± 6.9) and septic patients (age 44.0 ± 13.5). PER 96-well plates were coated with various substrates, including fibrinogen and collagen. Platelets were added to the coated plates in the presence or absence of thrombin or convulxin. Platelet activation and spreading was monitored by measuring changes in electrical impedance.ResultsPlatelets adhesion to fibrinogen and collagen increased impedance. In addition, impedance increased in response to thrombin or convulxin. No changes in impedance were observed in the absence of platelets or when wells were uncoated, indicating changes in impedance were directly due to platelet adhesion and activation. Inhibiting integrin αIIbβ3 decreased impedance when fibrinogen was used as a substrate, consistent with platelet-dependent effects. Platelets from septic patients caused increased impedance compared to healthy donors, demonstrating this assay can be used to assess platelet hyperreactivity.ConclusionPER can be applied as a high throughput tool to measure platelet reactivity in health and disease, where platelet activation is increased.
Project description:Currently approved platelet adenosine diphosphate (ADP) receptor antagonists target only the platelet P2Y12 receptor. Moreover, especially in patients with acute coronary syndromes, there is a strong need for rapidly acting and reversible antiplatelet agents in order to minimize the risk of thrombotic events and bleeding complications. In this study, a series of new P(1),P(4)-di(adenosine-5') tetraphosphate (Ap4A) derivatives with modifications in the base and in the tetraphosphate chain were synthesized and evaluated with respect to their effects on platelet aggregation and function of the platelet P2Y1, P2Y12, and P2X1 receptors. The resulting structure-activity relationships were used to design Ap4A analogs which inhibit human platelet aggregation by simultaneously antagonizing both P2Y1 and P2Y12 platelet receptors. Unlike Ap4A, the analogs do not activate platelet P2X1 receptors. Furthermore, the new compounds exhibit fast onset and offset of action and are significantly more stable than Ap4A to degradation in plasma, thus presenting a new promising class of antiplatelet agents.
Project description:BackgroundThrombin generation assay is a convenient and widely used method for analysis of the blood coagulation system status. Thrombin generation curve (TGC) is usually bell-shaped with a single peak, but there are exceptions. In particular, TGC in platelet-rich plasma (PRP) can sometimes have two peaks.ObjectiveWe sought to understand the mechanism underlying the occurrence of two peaks in the PRP thrombin generation curve.MethodsTissue factor-induced thrombin generation in PRP and platelet-poor plasma (PPP) was monitored using continuous measurement of the hydrolysis rate of the thrombin-specific fluorogenic substrate Z-Gly-Gly-Arg-AMC. Expression of phosphatidylserine (PS) and CD62P on the surface of activated platelets was measured by flow cytometry using corresponding fluorescently labeled markers.ResultsThe addition of the P(2)Y(12) receptor antagonist MeS-AMP (160 µM), 83 nM prostaglandin E(1) (PGE(1)), or 1.6% DMSO to PRP caused the appearance of two peaks in the TGC. The PS exposure after thrombin activation on washed platelets in a suspension supplemented with DMSO, PGE(1) or MeS-AMP was delayed, which could indicate mechanism of the second peak formation. Supplementation of PRP with 1.6% DMSO plus 830 nM PGE(1) mediated the disappearance of the second peak and decreased the amplitude of the first peak. Increasing the platelet concentration in the PRP promoted the consolidation of the two peaks into one.ConclusionsProcoagulant tenase and prothrombinase complexes in PRP assemble on phospholipid surfaces containing PS of two types--plasma lipoproteins and the surface of activated platelets. Thrombin generation in the PRP can be two-peaked. The second peak appears in the presence of platelet antagonists as a result of delayed PS expression on platelets, which leads to delayed assembly of the membrane-dependent procoagulant complexes and a second wave of thrombin generation.