Ontology highlight
ABSTRACT: Introduction
Gene signature has been used to predict prognosis in melanoma patients. Meanwhile, the efficacy of immunotherapy was correlated with particular genes expression or mutation. In this study, we systematically explored the gene expression pattern in the melanoma-immune microenvironment and its relationship with prognosis.Methods
A cohort of 122 melanoma cases with whole-genome microarray expression data were enrolled from the Gene Expression Omnibus (GEO) database. The findings were validated using The Cancer Genome Atlas (TCGA) database. A principal component analysis (PCA), gene set enrichment analysis (GSEA), and gene oncology (GO) analysis were performed to explore the bioinformatic implications.Results
Different gene expression patterns were identified according to the clinical stage. All eligible gene sets were analyzed, and the 8 genes (GPR87, KIT, SH3GL3, PVRL1, ATP1B1, CDAN1, FAU, and TNFSF14) with the greatest prognostic impact on melanoma. A gene-related risk signature was developed to distinguish patients with a high or low risk of an unfavorable outcome, and this signature was validated using the TCGA database. Furthermore, the prognostic significance of the signature between the classified subgroups was verified as an independent prognostic predictor of melanoma. Additionally, the low-risk melanoma patients presented an enhanced immune phenotype compared to that of the high-risk gene signature patients.Conclusions
The gene pattern differences in melanoma were profiled, and a gene signature that could independently predict melanoma patients with a high risk of poor survival was established, highlighting the relationship between prognosis and the local immune response.
SUBMITTER: Wang J
PROVIDER: S-EPMC7206882 | biostudies-literature | 2020
REPOSITORIES: biostudies-literature
Wang Jing J Kong Peng-Fei PF Wang Hai-Yun HY Song Di D Wu Wen-Qing WQ Zhou Hang-Cheng HC Weng Hai-Yan HY Li Ming M Kong Xin X Meng Bo B Chen Zong-Ke ZK Chen Jing-Jing JJ Li Chuan-Ying CY Shao Jian-Yong JY
Journal of oncology 20200429
<h4>Introduction</h4>Gene signature has been used to predict prognosis in melanoma patients. Meanwhile, the efficacy of immunotherapy was correlated with particular genes expression or mutation. In this study, we systematically explored the gene expression pattern in the melanoma-immune microenvironment and its relationship with prognosis.<h4>Methods</h4>A cohort of 122 melanoma cases with whole-genome microarray expression data were enrolled from the Gene Expression Omnibus (GEO) database. The ...[more]