Unknown

Dataset Information

0

Regulation of endothelial cell permeability by platelet-derived extracellular vesicles.


ABSTRACT: BACKGROUND:Platelet (Plt)-derived extracellular vesicles (Plt-EVs) have hemostatic properties similar to Plts. In addition to hemostasis, Plts also function to stabilize the vasculature and maintain endothelial cell (EC) barrier integrity. We hypothesized that Plt-EVs would inhibit vascular EC permeability, similar to fresh Plts. To investigate this hypothesis, we used in vitro and in vivo models of vascular endothelial compromise and bleeding. METHODS:In the vitro model, Plt-EVs were isolated by ultracentrifugation and characterized for Plt markers and particle size distribution. Effects of Plts and Plt-EVs on endothelial barrier function were assessed by transendothelial electrical resistance measurements and histological analysis of endothelial junction proteins. Hemostatic potential of Plt-EVs and Plts was assessed by multiple electrode Plt aggregometry. Using an in vivo model, the effects of Plts and Plt-EVs on vascular permeability and bleeding were assessed in non-obese diabetic-severe combined immunodeficient (NOD-SCID) mice by an established Miles assay of vascular permeability and a tail snip bleeding assay. RESULTS:In the in vitro model, Plt-EVs displayed exosomal size distribution and expressed Plt-specific surface markers. Platelets and Plt-EVs decreased EC permeability and restored EC junctions after thrombin challenge. Multiplate aggregometry revealed that Plt-EVs enhanced thrombin receptor-activating peptide-mediated aggregation of whole blood, whereas Plts enhanced thrombin receptor-activating peptide-, arachidonic acid-, collagen-, and adenosine diphosphate-mediated aggregation. In the in vivo model, Plt-EVs are equivalent to Plts in attenuating vascular endothelial growth factor (VEGF)-A-induced vascular permeability and uncontrolled blood loss in a tail snip hemorrhage model. CONCLUSION:Our study is the first to report that Plt-EVs might provide a feasible product for transfusion in trauma patients to attenuate bleeding, inhibit vascular permeability, and mitigate the endotheliopathy of trauma.

SUBMITTER: Miyazawa B 

PROVIDER: S-EPMC7381393 | biostudies-literature | 2019 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications


<h4>Background</h4>Platelet (Plt)-derived extracellular vesicles (Plt-EVs) have hemostatic properties similar to Plts. In addition to hemostasis, Plts also function to stabilize the vasculature and maintain endothelial cell (EC) barrier integrity. We hypothesized that Plt-EVs would inhibit vascular EC permeability, similar to fresh Plts. To investigate this hypothesis, we used in vitro and in vivo models of vascular endothelial compromise and bleeding.<h4>Methods</h4>In the vitro model, Plt-EVs  ...[more]

Similar Datasets

| S-EPMC6800133 | biostudies-literature
| S-EPMC5769804 | biostudies-literature
| S-EPMC5555101 | biostudies-other
| S-EPMC7563034 | biostudies-literature
| S-EPMC6856062 | biostudies-literature