Project description:PurposeWe investigated the impact of surgical masks (SM) during oxygen therapy using oxygen masks in volunteer- and simulation-based studies.MethodsFifteen volunteers wore the Hudson RCI® or Open-Face Mask® with/without an SM. The fraction of inspired oxygen concentration (FIO2), end-tidal CO2 (EtCO2), partial pressure of inspired CO2 (PICO2), and respiratory rate (RR) were measured. The oxygen flow rate increased from 0 to 10 L/min. In the simulation-based study, FIO2 was measured using a simulator that reproduced spontaneous breathing. RR was 12 or 24 bpm, and the tidal volume (Tv) was 300, 500, or 700 mL. The effect of oxygen mask fitting conditions was also examined. The primary outcome measure was FIO2 at 6 L/min.ResultsIn the volunteer-based study, FIO2 was reduced when the SM was used with the Hudson RCI® or Open-Face Mask®. The FIO2 drop was larger with the Open-Face Mask® than with the Hudson RCI®. The RR, EtCO2, and PICO2 significantly changed with the SM, but the differences were not clinically meaningful. In the simulation-based study, the SM with the Hudson RCI® did not reduce FIO2, but the SM with the Open-Face Mask® significantly decreased FIO2 under several conditions. However, the SM with the Hudson Mask® reduced FIO2 when the fit of the mask was inadequate. With the Open-Face Mask®, lower RR and Tv resulted in larger differences in FIO2.ConclusionsThe SM decreased FIO2 during oxygen therapy with oxygen masks. The impact of SM depended on the type of the oxygen mask, mask fitting, and respiratory condition.
Project description:BackgroundContinuous measurement of urinary PO2 (PuO2) is being applied to indirectly monitor renal medullary PO2. However, when applied to critically ill patients with shock, its measurement may be affected by changes in FiO2 and PaO2 and potential associated O2 diffusion between urine and ureteric or bladder tissue. We aimed to investigate PuO2 measurements in septic shock patients with a fiberoptic luminescence optode inserted into the urinary catheter lumen in relation to episodes of FiO2 change. We also evaluated medullary and urinary oxygen tension values in Merino ewes at two different FiO2 levels.ResultsIn 10 human patients, there were 32 FiO2 decreases and 31 increases in FiO2. Median pre-decrease FiO2 was 0.36 [0.30, 0.39] and median post-decrease FiO2 was 0.30 [0.23, 0.30], p = 0.006. PaO2 levels decreased from 83 mmHg [77, 94] to 72 [62, 80] mmHg, p = 0.009. However, PuO2 was 23.2 mmHg [20.5, 29.0] before and 24.2 mmHg [20.6, 26.3] after the intervention (p = 0.56). The median pre-increase FiO2 was 0.30 [0.21, 0.30] and median post-increase FiO2 was 0.35 [0.30, 0.40], p = 0.008. PaO2 levels increased from 64 mmHg [58, 72 mmHg] to 71 mmHg [70, 100], p = 0.04. However, PuO2 was 25.0 mmHg [IQR: 20.7, 26.8] before and 24.3 mmHg [IQR: 20.7, 26.3] after the intervention (p = 0.65). A mixed linear regression model showed a weak correlation between the variation in PaO2 and the variation in PuO2 values. In 9 Merino ewes, when comparing oxygen tension levels between FiO2 of 0.21 and 0.40, medullary values did not differ (25.1 ± 13.4 mmHg vs. 27.9 ± 15.4 mmHg, respectively, p = 0.6766) and this was similar to urinary oxygen values (27.1 ± 6.17 mmHg vs. 29.7 ± 4.41 mmHg, respectively, p = 0.3192).ConclusionsChanges in FiO2 and PaO2 within the context of usual care did not affect PuO2. Our findings were supported by experimental data and suggest that PuO2 can be used as biomarker of medullary oxygenation irrespective of FiO2.
Project description:BackgroundDuring COVID-19 pandemic, people who developed pneumonia and needed supplemental oxygen, where treated with low-flow oxygen therapy systems and non-invasive methods, including oxygen therapy using high flow nasal cannula (HFNC) and the application of bi-level or continuous positive airway pressure (BiPAP or CPAP). We aimed to investigate the outcomes of critical COVID-19 patients treated with HFNC and unveil predictors of HFNC failure.MethodsWe retrospectively enrolled patients admitted to COVID-19 wards and treated with HFNC for COVID-19-related severe hypoxemic respiratory failure. The primary outcome of this study was treatment failure, such as the composite of intubation or death during hospital stay. The association between treatment failure and clinical features was evaluated using logistic regression models.ResultsOne hundred thirty-two patients with a median (IQR) PaO2/FiO2 ratio 96 (63-173) mmHg at HFNC initiation were studied. Overall, 45.4% of the patients were intubated. Hospital mortality was 31.8%. Treatment failure (intubation or death) occurred in 50.75% and after adjustment for age, gender, Charlson Comorbidity index (CCI) score and National Early Warning Score 2 (NEWS2) score on admission and PaO2/FiO2 ratio and acute respiratory distress syndrome (ARDS) severity at the time of HFNO initiation, it was significantly associated with the presence of dyspnea [adjusted OR 2.48 (95% CI: 1.01-6.12)], and higher Urea serum levels [adjusted OR 1.25 (95% CI: 1.03-1.51) mg/dL].ConclusionsHFNC treatment was successful in almost half of the patients with severe COVID-19-related acute hypoxemic respiratory failure (AHRF). The presence of dyspnea and high serum Urea levels on admission are closely related to HFNC failure.
Project description:Postnatal adaptation of preterm infants entails a series of difficulties among which the immaturity of the respiratory system is the most vital. To overcome respiratory insufficiency, caregivers attending in the delivery room use positive pressure ventilation and oxygen. A body of evidence in relation of oxygen management in the delivery room has been accumulated in recent years; however, the optimal initial inspired fraction of oxygen, the time to achieve specific oxygen saturation targets, and oxygen titration have not been yet clearly established. The aim of this review is to update the reader by critically analyzing the most relevant literature.
Project description:Few studies have focused on the evaluation of vaccine effectiveness (VE) in mainland China. This study was to characterize the VE including the frequent symptoms, laboratory indices, along with endotracheal intubation, hospital length of stay (LoS), and survival status. This retrospective cohort study included patients with COVID-19 admitted to our hospital. Statistical comparisons of continuous variables were carried out with an independent Student's t-test or Mann-Whitney U test. For categorical variables, the Chi-square test and Fisher exact test were used. Multivariable regression analysis was performed to adjust the confounding factors such as age, gender, body mass index (BMI), residential area, smoking status, the Charlson comorbidity index (CCI) score, followed by investigating the effects of vaccination on critical ill prevention, reduced mortality and endotracheal intubation, LoS and inspired oxygen. This study included 549 hospitalized patients with COVID-19, including 222 (40.43 %) vaccinated participants and 327 (59.57 %) unvaccinated counterparts. There was no obvious difference between the two groups in typical clinical symptoms of COVID-19, clinical laboratory results and mortality. Multivariable analysis showed that COVID-19 vaccine obviously reduced LoS by 1.2 days (lnLoS = -0.14, 95 %CI[-0.24,-0.04]; P = 0.005) and decreased fraction of inspired oxygen by 40 % (OR: 0.60; 95 %CI[0.40,0.90]; P = 0.013) after adjusting age, gender, BMI, residential area, smoking status and CCI score. In contrast, vaccination induced reduction in the critically ill, mortality, and endotracheal intubation compared with the unvaccinated counterparts, but with no statistical differences. Vaccinated patients hospitalized with COVID-19 have a reduced LoS and fraction of inspired oxygen compared to unvaccinated cases in China.
Project description:This updated meta-analysis aims at exploring whether the use of systematic high vs low intraoperative oxygen fraction (FiO2) may decrease the incidence of postoperative surgical site infection during general (GA) or regional anesthesia (RA). PubMed, Cochrane CENTRAL, ClinicalTrials.gov databases were searched from January 1st, 1999 and July, 1st 2022, for randomized and quasi-randomized controlled trials that included patients in a high and low FiO2 groups and reported the incidence of SSI. The meta-analysis was conducted with a DerSimonian and Laird random-effects model. Thirty studies (24 for GA and 6 for RA) totaling 18,055 patients (15,871 for GA and 2184 for RA) were included. We have low-to-moderate-quality evidence that high FiO2 (mainly 80%) was not associated with a reduction of SSI incidence compared to low FiO2 (mainly 30%) in all patients (RR 0.90, 95%CI 0.79-1.03). Moderate inconsistency existed between studies (I2 = 38%). Subgroup analyses showed a moderate protective effect in patients undergoing GA (RR 0.86, 95%CI 0.75-0.99) (low level of evidence), while high FiO2 was not associated with a reduction of SSI in patients undergoing RA (RR 1.17, 95%CI 0.90-1.52) (moderate level of evidence). Sensitivity analyses restricted to patients ventilated without nitrous oxide (n = 20 studies), to patients operated from abdominal surgeries (n = 21 studies), and to patients suffering from deep SSI (n = 13 studies), all showed the absence of any significant effect of high FiO2. As a conclusion there is no compelling evidence that high FiO2 can improve postoperative patient's outcome on its own when good SSI prevention practices are properly applied. Recent well-designed and adequately powered randomized controlled trials add further weight to these results.
Project description:PurposeWhether the use of high-flow nasal oxygen in adult patients with COVID-19 associated acute respiratory failure improves clinically relevant outcomes remains unclear. We thus sought to assess the effect of high-flow nasal oxygen on ventilator-free days, compared to early initiation of invasive mechanical ventilation, on adult patients with COVID-19.MethodsWe conducted a multicentre cohort study using a prospectively collected database of patients with COVID-19 associated acute respiratory failure admitted to 36 Spanish and Andorran intensive care units (ICUs). Main exposure was the use of high-flow nasal oxygen (conservative group), while early invasive mechanical ventilation (within the first day of ICU admission; early intubation group) served as the comparator. The primary outcome was ventilator-free days at 28 days. ICU length of stay and all-cause in-hospital mortality served as secondary outcomes. We used propensity score matching to adjust for measured confounding.ResultsOut of 468 eligible patients, a total of 122 matched patients were included in the present analysis (61 for each group). When compared to early intubation, the use of high-flow nasal oxygen was associated with an increase in ventilator-free days (mean difference: 8.0 days; 95% confidence interval (CI): 4.4 to 11.7 days) and a reduction in ICU length of stay (mean difference: - 8.2 days; 95% CI - 12.7 to - 3.6 days). No difference was observed in all-cause in-hospital mortality between groups (odds ratio: 0.64; 95% CI: 0.25 to 1.64).ConclusionsThe use of high-flow nasal oxygen upon ICU admission in adult patients with COVID-19 related acute hypoxemic respiratory failure may lead to an increase in ventilator-free days and a reduction in ICU length of stay, when compared to early initiation of invasive mechanical ventilation. Future studies should confirm our findings.
Project description:ObjectiveWe examined weather a protocol for fraction of inspired oxygen (FiO2) adjustment can reduce hyperoxemia and excess oxygen use in COVID-19 patients mechanically ventilated.DesignProspective cohort study.SettingTwo intensive care units (ICUs) dedicated to COVID-19 patients in Brazil.PatientsConsecutive patients with COVID-19 mechanically ventilated.InterventionsOne ICU followed a FiO2 adjustment protocol based on SpO2 (conservative-oxygen ICU) and the other, which did not follow the protocol, constituted the control ICU.Main variables of interestPrevalence of hyperoxemia (PaO2 >100 mmHg) on day 1, sustained hyperoxemia (present on days 1 and 2), and excess oxygen use (FiO2 > 0.6 in patients with hyperoxemia) were compared between the two ICUs.ResultsEighty two patients from the conservative-oxygen ICU and 145 from the control ICU were included. The conservative-oxygen ICU presented lower prevalence of hyperoxemia on day 1 (40.2% vs. 75.9%, p < 0.001) and of sustained hyperoxemia (12.2% vs. 49.6%, p < 0.001). Excess oxygen use was less frequent in the conservative-oxygen ICU on day 1 (18.3% vs. 52.4%, p < 0.001). Being admitted in the control ICU was independently associated with hyperoxemia and excess oxygen use. Multivariable analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FiO2 use and adverse clinical outcomes.ConclusionsFollowing FiO2 protocol was associated with lower hyperoxemia and less excess oxygen use. Although those results were not associated with better clinical outcomes, adopting FiO2 protocol may be useful in a scenario of depleted oxygen resources, as was seen during the COVID-19 pandemic.
Project description:ObjectiveWe examined weather a protocol for fraction of inspired oxygen (FiO2) adjustment can reduce hyperoxemia and excess oxygen use in COVID-19 patients mechanically ventilated.DesignProspective cohort study.SettingTwo intensive care units (ICUs) dedicated to COVID-19 patients in Brazil.PatientsConsecutive patients with COVID-19 mechanically ventilated.InterventionsOne ICU followed a FiO2 adjustment protocol based on SpO2 (conservative-oxygen ICU) and the other, which did not follow the protocol, constituted the control ICU.Main variables of interestPrevalence of hyperoxemia (PaO2>100mmHg) on day 1, sustained hyperoxemia (present on days 1 and 2), and excess oxygen use (FiO2>0.6 in patients with hyperoxemia) were compared between the two ICUs.ResultsEighty two patients from the conservative-oxygen ICU and 145 from the control ICU were included. The conservative-oxygen ICU presented lower prevalence of hyperoxemia on day 1 (40.2% vs. 75.9%, p<0.001) and of sustained hyperoxemia (12.2% vs. 49.6%, p<0.001). Excess oxygen use was less frequent in the conservative-oxygen ICU on day 1 (18.3% vs. 52.4%, p<0.001). Being admitted in the control ICU was independently associated with hyperoxemia and excess oxygen use. Multivariable analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FiO2 use and adverse clinical outcomes.ConclusionsFollowing FiO2 protocol was associated with lower hyperoxemia and less excess oxygen use. Although those results were not associated with better clinical outcomes, adopting FiO2 protocol may be useful in a scenario of depleted oxygen resources, as was seen during the COVID-19 pandemic.