Project description:BackgroundImpaired perfusion indices signal potential microvascular dysfunction preceding atherosclerosis and other cardiometabolic pathologies. Post-occlusive reactive hyperemia (PORH), a vasodilatory response following a mechanically induced ischemia, is a transient increase in perfusion and can assess microvascular function. The greatest blood flow change corresponding to the first minute of hyperemia (represented by time-to-peak, hyperemic velocity, AUC within 1st min) has been shown to indicate microvascular dysfunction. However, the reproducibility of these temporal kinetic indices of the PORH response is unknown. Our aim was to examine the inter- and intra-day reproducibility and standardization of reactive hyperemia, with emphasis on the kinetic indices of PORH, using laser speckle contrast imaging (LSCI) technique.Methods and resultsSeventeen healthy adults (age = 24 ± 3 years) completed three PORH bouts over two lab visits. LSCI region of interest was a standardized 10 cm region on the dominant ventral forearm. A 5-min brachial artery occlusion period induced by inflating an arm cuff to 200 mmHg, preceded a 4-min hyperemic period. Inter- and intra-day reliability and reproducibility of cutaneous vascular conductance (LSCI flux / mean arterial pressure) were determined using intraclass correlation (ICC) and coefficient of variation (CV%). Maximal flow and area under the curve standardized to zero perfusion showed intra- and inter-day reliability (ICC > 0.70). Time to maximal flow (TMF) was not reproducible (inter-day CV = 18%). However, alternative kinetic indices such as 1-min AUC and overshoot rate-of-change (ORC), represented as a piecewise function (at 5s, 10s, 15s, and 20s into hyperemia), were reproducible (CV< 11%). Biological zero was a reliable normalization point.ConclusionPORH measured with LSCI is a reliable assessment of microvascular function. However, TMF or its derived hyperemic velocity are not recommended for longitudinal assessment. Piecewise ORC and 1-min AUC are reliable alternatives to assess the kinetic response of PORH.
Project description:Intraoperative parameters of renal cortical microperfusion (RCM) have been associated with postoperative ischemia/reperfusion injury. Laser speckle contrast imaging (LSCI) could provide valuable information in this regard with the advantage over the current standard of care of being a non-contact and full-field imaging technique. Our study aims to validate the use of LSCI for the visualization of RCM on ex vivo perfused human-sized porcine kidneys in various models of hemodynamic changes. A comparison was made between three renal perfusion measures: LSCI, the total arterial renal blood flow (RBF), and sidestream dark-field (SDF) imaging in different settings of ischemia/reperfusion. LSCI showed a good correlation with RBF for the reperfusion experiment (0.94 ± 0.02; p < 0.0001) and short- and long-lasting local ischemia (0.90 ± 0.03; p < 0.0001 and 0.81 ± 0.08; p < 0.0001, respectively). The correlation decreased for low flow situations due to RBF redistribution. The correlation between LSCI and SDF (0.81 ± 0.10; p < 0.0001) showed superiority over RBF (0.54 ± 0.22; p < 0.0001). LSCI is capable of imaging RCM with high spatial and temporal resolutions. It can instantaneously detect local perfusion deficits, which is not possible with the current standard of care. Further development of LSCI in transplant surgery could help with clinical decision making.
Project description:Abstract. Significance Microfluidic flow phantom studies are commonly used for characterizing the performance of laser speckle contrast imaging (LSCI) instruments. The selection of the flow control system is critical for the reliable generation of flow during testing. The majority of recent LSCI studies using microfluidics used syringe pumps for flow control. Aim We quantified the uncertainty in flow generation for a syringe pump and a pressure-regulated flow system. We then assessed the performance of both LSCI and multi-exposure speckle imaging (MESI) using the pressure-regulated flow system across a range of flow speeds. Approach The syringe pump and pressure-regulated flow systems were evaluated during stepped flow profile experiments in a microfluidic device using an inline flow sensor. The uncertainty associated with each flow system was calculated and used to determine the reliability for instrument testing. The pressure-regulated flow system was then used to characterize the relative performance of LSCI and MESI during stepped flow profile experiments while using the inline flow sensor as reference. Results The pressure-regulated flow system produced much more stable and reproducible flow outputs compared to the syringe pump. The expanded uncertainty for the syringe pump was 8 to Conclusions Pressure-regulated flow systems should be used instead of syringe pumps when assessing the performance of flow measurement techniques with microfluidic studies. MESI offers more accurate relative flow measurements than traditional LSCI across a wide range of flow speeds.
Project description:Multi-exposure laser speckle contrast imaging (MELSCI) estimates microcirculatory blood perfusion more accurately than single-exposure LSCI. However, the technique has been hampered by technical limitations due to massive data throughput requirements and nonlinear inverse search algorithms, limiting it to an offline technique where data must be postprocessed. To present an MELSCI system capable of continuous acquisition and processing of MELSCI data, enabling real-time video-rate perfusion imaging with high accuracy. The MELSCI algorithm was implemented in programmable hardware (field programmable gate array) closely interfaced to a high-speed CMOS sensor for real-time calculation. Perfusion images were estimated in real-time from the MELSCI data using an artificial neural network trained on simulated data. The MELSCI perfusion was compared to two existing single-exposure metrics both quantitatively in a controlled phantom experiment and qualitatively in vivo. The MELSCI perfusion shows higher signal dynamics compared to both single-exposure metrics, both spatially and temporally where heartbeat-related variations are resolved in much greater detail. The MELSCI perfusion is less susceptible to measurement noise and is more linear with respect to laser Doppler perfusion in the phantom experiment (R2 = 0.992). The presented MELSCI system allows for real-time acquisition and calculation of high-quality perfusion at 15.6 frames per second.
Project description:Although there is increasing use of focused ultrasound stimulation (FUS) in brain studies, the real-time changes of the cerebral blood flow (CBF) due to FUS remain unclear. In this study, we developed a novel scheme combining FUS and laser speckle contrast imaging, which can be used to measure the CBF caused by FUS in real time. The results showed that the change of CBF increased from 0 to 30 s and reached up to the maximum of 115.1 ± 6.5% at 30 s and then decreased gradually from 30 to 60 s. This study demonstrates that FUS was able to increase CBF and alter cortical hemodynamic responses, which indicates that FUS is a potential non-invasive method to study ischemic stroke rehabilitation.
Project description:ObjectiveLaser-based tissue perfusion monitoring techniques have been increasingly used in animal and human research to assess blood flow. However, these techniques use arbitrary units, and knowledge about their comparability is scarce. This study aimed to model the relationship between laser speckle contrast imaging (LSCI) and laser Doppler perfusion imaging (LDPI), for measuring tissue perfusion over a wide range of blood flux values.MethodsFifteen healthy volunteers (53% female, median age 29 [IQR 22-40] years) were enrolled in this study. We performed iontophoresis with sodium nitroprusside on the forearm to induce regional vasodilation to increase skin blood flux. Besides, a stepwise vascular occlusion was applied on the contralateral upper arm to reduce blood flux. Both techniques were compared using a linear mixed model analysis.ResultsBaseline blood flux values measured by LSCI were 33 ± 6.5 arbitrary unit (AU) (Coefficient of variation [CV] = 20%) and by LDPI 60 ± 11.5 AU (CV = 19%). At the end of the iontophoresis protocol, the regional blood flux increased to 724 ± 412% and 259 ± 87% of baseline measured by LDPI and LSCI, respectively. On the other hand, during the stepwise vascular occlusion test, the blood flux reduced to 212 ± 40% and 412 ± 177% of its baseline at LDPI and LSCI, respectively. A strong correlation was found between the LSCI and LDPI instruments at increased blood flux with respect to baseline skin blood flux; however, the correlation was weak at reduced blood flux with respect to baseline.DiscussionLSCI and LDPI instruments are highly linear for blood flux higher than baseline skin blood flux; however, the correlation decreased for blood flux lower than baseline. This study's findings could be a basis for using LSCI in specific patient populations, such as burn care.
Project description:Primary outcome(s): -The percentage of operating surgeons that indicated no change in location of the anastomosis based on the additional Lapvas-Imaging derived visual feedback;
-The percentage of the non-involved surgeons that indicated no change in location of the anastomosis based on the additional Lapvas-Imaging derived visual feedback;
-The proportion of the indication of a change in location by operating and non-involved surgeons between patients with and without AL;
-The homogeneity of the change in location between non-involved surgeons for individual patients;
-The estimated change in location of the anastomosis proximal/distal in centimeters by the treating surgeon;
-The estimated change in location of the anastomosis proximal/distal in centimeters by non-involved surgeons;
-A change in the location of the anastomosis by non-involved surgeons in comparison to the operating surgeon;
-Development of anastomotic leakage;
-Extra time taken for imaging during surgery (seconds)
Study Design: N/A: single arm study, N/A , unknown, Other
Project description:Laser speckle contrast imaging (LSCI) enables continuous high-resolution assessment of microcirculation in real-time. We applied an endoscope to LSCI to measure cochlear blood-flow in an ischemia-reperfusion mouse model. We also explored whether using xenon light in combination with LSCI facilitates visualization of anatomical position. Based on a previous preliminary study, the appropriate wavelength for penetrating the thin bony cochlea was 830 nm. A 2.7-mm-diameter endoscope was used, as appropriate for the size of the mouse cochlea. Our endoscopic LSCI system was used to illuminate the right cochlea after dissection of the mouse. We observed changes in the speckle signals when we applied the endoscopic LSCI system to the ischemia-reperfusion mouse model. The anatomical structure of the mouse cochlea and surrounding structures were clearly visible using the xenon light. The speckle signal of the cochlea was scattered, with an intensity that varied between that of the stapes (with the lowest signal), the negative control, and the stapedial artery (with the highest signal), the positive control. In the cochlear ischemia-reperfusion mouse model, the speckle signal of the cochlea decreased during the ischemic phase, and increased during the reperfusion phase, clearly reflecting cochlear blood-flow. The endoscopic LSCI system generates high-resolution images in real-time, allowing visualization of blood-flow and its changes in the mouse cochlea. Anatomical structures were clearly matched using LSCI along with visible light.
Project description:Cutaneous microvasculopathy complicates wound healing. Functional assessment of gated individual dermal microvessels is therefore of outstanding interest. Functional performance of laser speckle contrast imaging (LSCI) systems is compromised by motion artefacts. To address such weakness, post-processing of stacked images is reported. We report the first post-processing of binary raw data from a high-resolution LSCI camera. Sharp images of low-flowing microvessels were enabled by introducing inverse variance in conjunction with speckle contrast in Matlab-based program code. Extended moving window averaging enhanced signal-to-noise ratio. Functional quantitative study of blood flow kinetics was performed on single gated microvessels using a free hand tool. Based on detection of flow in low-flow microvessels, a new sharp contrast image was derived. Thus, this work presents the first distinct image with quantitative microperfusion data from gated human foot microvasculature. This versatile platform is applicable to study a wide range of tissue systems including fine vascular network in murine brain without craniotomy as well as that in the murine dorsal skin. Importantly, the algorithm reported herein is hardware agnostic and is capable of post-processing binary raw data from any camera source to improve the sensitivity of functional flow data above and beyond standard limits of the optical system.