Project description:The globular-to-unraveled conformation transition of von Willebrand factor (vWF), a large polymeric glycoprotein in human blood plasma, is a crucial step in the process of clotting at sites of vascular injury. However, unraveling of vWF multimers in uninjured vasculature can lead to pathology (i.e., thrombus formation or degradation of vWF proteins by enzyme ADAMTS13, making them nonfunctional). To identify blood flow conditions that might induce pathological unraveling of vWF multimers, here we have computed the globular-to-unraveled transition rate of vWF multimers subjected to varying strain rate elongational flow by employing an enhanced sampling technique, the weighted ensemble method. Weighted ensemble sampling was employed instead of standard brute-force simulations because pathological blood flow conditions can induce undesired vWF unraveling on timescales potentially inaccessible to standard simulation methods. Results here indicate that brief but periodic exposure of vWF to the elongational flow of strain rate greater than or equal to 2500 s-1 represents a source of possible pathology caused by the undesired unraveling of vWF multimers.
Project description:Progress in both basic and translational research into the molecular mechanisms of VWD can be seen in multiple fields.Genetics of vwdIn the past several decades, knowledge of the underlying pathogenesis of von Willebrand disease (VWD) has increased tremendously, thanks in no small part to detailed genetic mapping of the von Willebrand Factor (VWF) gene and advances in genetic and bioinformatic technology. However, these advances do not always easily translate into improved management for patients with VWD and low-VWF levels.Vwd and pregnancyFor example, the treatment of pregnant women with VWD both pre- and postpartum can be complicated. While knowledge of the VWF genotype at some amino acid positions can aid in knowledge of who may be at increased risk of thrombocytopenia or insufficient increase in VWF levels during pregnancy, in many cases, VWF levels and bleeding severity is highly heterogeneous, making monitoring recommended during pregnancy to optimize treatment strategies. VWF AND COVID-19: New challenges related to the consequences of dysregulation of hemostasis continue to be discovered. The ongoing COVID-19 pandemic has highlighted that VWF has additional biological roles in the regulation of inflammatory disorders and angiogenesis, disruption of which may contribute to COVID-19 induced vasculopathy. Increased endothelial cell activation and Weibel-Palade body exocytosis in severe COVID-19 lead to markedly increased plasma VWF levels. Coupled with impairment of normal ADAMTS13 multimer regulation, these data suggest a role for VWF in the pathogenesis underlying pulmonary microvascular angiopathy in severe COVID-19.ConclusionWith the increased affordability and availability of next-generation sequencing techniques, as well as a push towards a multi-omic approach and personalized medicine in human genetics, there is hope that translational research will improve VWD patient outcomes.
Project description:Liver diseases are associated with complex changes in the hemostatic system and elevated levels of the platelet-adhesive protein Von Willebrand factor (VWF) are reported in patients with acute and chronic liver damage. Although elevated levels of VWF are associated with fibrosis in the general population, the role of VWF in acute and chronic liver injury has not been examined in depth in experimental settings. We tested the hypothesis that VWF deficiency inhibits experimental liver injury and fibrosis. Wild-type (WT) and VWF-deficient mice were challenged with carbon tetrachloride (CCl4) and the impact of VWF deficiency on acute liver injury and chronic liver fibrosis was determined. VWF deficiency did not significantly affect acute CCl4-induced hepatocellular necrosis in mice. Chronic CCl4 challenge, twice weekly for 6weeks, significantly increased hepatic stellate cell activation and collagen deposition in livers of WT mice. Interestingly, hepatic induction of several profibrogenic and stellate cell activation genes was attenuated in VWF-deficient mice. Moreover, birefringent sirius red staining (indicating type I and III collagens) and type I collagen immunofluorescence indicated a reduction in hepatic collagen deposition in CCl4-exposed VWF-deficient mice compared to CCl4-exposed WT mice. The results indicate that VWF deficiency attenuates chronic CCl4-induced liver fibrosis without affecting acute hepatocellular necrosis. The results are the first to demonstrate that VWF deficiency reduces the progression of liver fibrosis, suggesting a mechanistic role of elevated plasma VWF levels in cirrhosis.
Project description:BackgroundProteolytic cleavage of von Willebrand factor (VWF) by ADAMTS13 is crucial for normal hemostasis. Our previous studies demonstrate that binding of coagulation factor VIII (or FVIII) to VWF enhances the proteolytic cleavage of VWF by ADAMTS13 under shear.ObjectivesPresent study aims to determine the mechanism underlying FVIII-mediated enhancing effect on VWF proteolysis by ADAMTS13 under force.MethodsSingle molecular force spectroscopy, atomic force microscopy, and surface plasmon resonance are all used.ResultsUsing single molecule force spectroscopy, we show that an addition of FVIII (~5 nmol/L) to D'D3 or D'D3A1 does not significantly alter force-induced unfolding of these fragments; however, an addition of FVIII at the same concentration to D'D3A1A2 eliminates its long unfolding event at ~40 nm, suggesting that binding of FVIII to D'D3 and/or A2 may result in force-induced conformational changes in A2 domain. Atomic force spectroscopy further demonstrates the direct binding between FVIII and D'D3 (or A2) with an intrinsic 2-dimensional off-rate (k0 ) of 0.02 ± 0.01/s (or 0.3 ± 0.1/s). The direct binding interaction between FVIII and A2 is further confirmed with the surface plasmon resonance assay, with a dissociation constant of ~0.2 μmol/L; no binding is detected between FVIII and A1 under the same conditions.ConclusionsOur results suggest that binding of FVIII to D'D3 and/or A2 may alter the mechanical property in the central A2 domain. The findings provide novel insight into the molecular mechanism underlying FVIII-dependent regulation of VWF proteolysis by ADAMTS13 under mechanical force.
Project description:AbstractLong-term prophylaxis with a von Willebrand factor (VWF) concentrate is recommended in patients with von Willebrand disease (VWD) who have a history of severe and frequent bleeds. However, data from prospective studies are scarce. WIL-31, a prospective, noncontrolled, international phase 3 trial, investigated the efficacy and safety of Wilate prophylaxis in severe patients with VWD. Male and female patients 6 years or older with VWD types 1, 2 (except 2N), or 3 who had completed a prospective, 6-month, on-demand, run-in study (WIL-29) were eligible to receive Wilate prophylaxis for 12 months. At baseline, patients (n = 33) had a median age of 18 years. Six (18%) patients had severe type 1, 5 (15%) had type 2, and 22 (67%) had type 3 VWD. The primary end point of a >50% reduction in mean total annualized bleeding rate (TABR) with Wilate prophylaxis vs prior on-demand treatment was met; mean TABR during prophylaxis was 5.2, representing an 84.4% reduction. The bleeding reduction was consistent across age, sex, and VWD types. The mean spontaneous ABR was 3.2, representing an 86.9% reduction vs on-demand treatment. During prophylaxis, 10 (30.3%) patients had 0 bleeding events and 15 (45.5%) patients had 0 spontaneous bleeding events. Of 173 BEs, 84.4% were minor and 69.9% treated. No serious adverse events related to study treatment and no thrombotic events were recorded. Overall, WIL-31 showed that Wilate prophylaxis was efficacious and well-tolerated in pediatric and adult patients with VWD of all types. The WIL-29 and WIL-31 trials were registered at www.ClinicalTrials.gov as #NCT04053699 and #NCT04052698, respectively.
Project description:Recent studies have reported that patients with von Willebrand disease treated perioperatively with a von Willebrand factor (VWF)/factor VIII (FVIII) concentrate with a ratio of 2.4:1 (Humate P/Haemate P) often present with VWF and/or FVIII levels outside of prespecified target levels necessary to prevent bleeding. Pharmacokinetic (PK)-guided dosing may resolve this problem. As clinical guidelines increasingly recommend aiming for certain target levels of both VWF and FVIII, application of an integrated population PK model describing both VWF activity (VWF:Act) and FVIII levels may improve dosing and quality of care. In total, 695 VWF:Act and 894 FVIII level measurements from 118 patients (174 surgeries) who were treated perioperatively with the VWF/FVIII concentrate were used to develop this population PK model using nonlinear mixed-effects modeling. VWF:Act and FVIII levels were analyzed simultaneously using a turnover model. The protective effect of VWF:Act on FVIII clearance was described with an inhibitory maximum effect function. An average perioperative VWF:Act level of 1.23 IU/mL decreased FVIII clearance from 460 mL/h to 264 mL/h, and increased FVIII half-life from 6.6 to 11.4 hours. Clearly, in the presence of VWF, FVIII clearance decreased with a concomitant increase of FVIII half-life, clarifying the higher FVIII levels observed after repetitive dosing with this concentrate. VWF:Act and FVIII levels during perioperative treatment were described adequately by this newly developed integrated population PK model. Clinical application of this model may facilitate more accurate targeting of VWF:Act and FVIII levels during perioperative treatment with this specific VWF/FVIII concentrate (Humate P/Haemate P).
Project description:Backgroundvon Willebrand factor (VWF) variant c.2771G>A; p.R924Q has been described as a benign polymorphism or a possible marker for a null allele and been associated with mild bleeding phenotypes. It was identified in several patients in recent type 1 von Willebrand disease (VWD) studies.ObjectivesTo determine whether the p.R924Q allele contributes to reduced VWF levels and type 1 VWD.MethodsOne thousand one hundred and fifteen healthy controls and 148 index cases from the MCMDM-1VWD study were genotyped for c.2771G>A; VWF and FVIII levels were analyzed in ABO blood group stratified individuals and the p.R924Q variant was expressed in 293 EBNA cells.Resultsc.2771G>A was present in six index cases, five of whom had a second VWF variant which probably contributed to the phenotype. A common core haplotype identified in families, which included the rare G allele of c.5843-8C>G, was present in the majority of 35 c.2771G>A heterozygous controls. c.2771G>A contributed about 10% variance in VWF and FVIII levels in controls and 35% variance when co-inherited with blood group O. Recombinant p.R924Q VWF had no effect on in vitro expression and heterozygous family members had normal VWF-FVIII binding and normal clearance of VWF and FVIII.ConclusionsThe allele bearing c.2771A leads to reductions in VWF and FVIII levels particularly in combination with blood group O. Its inheritance alone may be insufficient for VWD diagnosis, but it appears to be associated with a further VWF level reduction in individuals with a second VWF mutation and it contributes to population variance in VWF and FVIII levels.
Project description:BackgroundPhenotypic von Willebrand disease (VWD) classification requires multiple tests including analysis of multimeric distributions von Willebrand factor (VWF) and evaluation of its structure. VWF multimer analysis is labor intensive, nonstandardized, and limited to specialized laboratories. A commercial semiautomatic assay, HYDRAGEL VW multimer assay (H5/11VWM, Sebia), has become available.ObjectivesEstablishment of reference ranges for H5/11VWM to improve VWD classification.MethodsImplementation validation, establishment and validation of normal and pathological reference intervals (NRIs/PRIs), comparison with in-house method using 40 healthy volunteers and 231 VWD patients.ResultsQualitative and quantitative validation of NRI obtained sensitivity of 88% and 79%, respectively, for type 2. Comparison of the two methods showed an overall concordance of 86% with major conflicting results in all atypical 2B (n = 7) and 50% 2M-GPIb (n = 41) showing quantitative and qualitative multimeric loss, that was not detected with in-house method. We were able to use established PRIs, with 73% validity in type 2 cases, to distinguish individual type 2A subtypes (IIA, IIC, IID, IIE) from 2M and 2B.ConclusionH5/11VWM could be used for all clinical purposes because its reliability and its rapid and accurate diagnostic ability and reduced observer bias. Although H5/11VWM cannot evaluate triplet structures, we were able to define 2A subtypes by stripping back to the percentage of intermediate/high-molecular-weight multimers. H5/11HWM could be an efficient and widely available alternative for the "gold standard" technique.
Project description:Several missense mutations in the von Willebrand Factor (VWF) gene of von Willebrand disease (VWD) patients have been shown to cause impaired constitutive secretion and intracellular retention of VWF. However, the effects of those mutations on the intracellular storage in Weibel-Palade bodies (WPBs) of endothelial cells and regulated secretion of VWF remain unknown. We demonstrate, by expression of quantitative VWF mutants in HEK293 cells, that four missense mutations in the D3 and CK-domain of VWF diminished the storage in pseudo-WPBs, and led to retention of VWF within the endoplasmic reticulum (ER). Immunofluorescence and electron microscopy data showed that the pseudo-WPBs formed by missense mutant C1060Y are indistinguishable from those formed by normal VWF. C1149R, C2739Y, and C2754W formed relatively few pseudo-WPBs, which were often short and sometimes round rather than cigar-shaped. The regulated secretion of VWF was impaired slightly for C1060Y but severely for C1149R, C2739Y, and C2754W. Upon co-transfection with wild-type VWF, both intracellular storage and regulated secretion of all mutants were (partly) corrected. In conclusion, defects in the intracellular storage and regulated secretion of VWF following ER retention may be a common mechanism underlying VWD with a quantitative deficiency of VWF.
Project description:von Willebrand factor (VWF) level and function are influenced by genetic variation in VWF and several other genes in von Willebrand disease type 1 (VWD1) patients. This study comprehensively screened for VWF variants and investigated the presence of ABO genotypes and common and rare VWF variants in Swedish VWD1 patients. The VWF gene was resequenced using Ion Torrent and Sanger sequencing in 126 index cases historically diagnosed with VWD. Exon 7 of the ABO gene was resequenced using Sanger sequencing. Multiplex ligation-dependent probe amplification analysis was used to investigate for copy number variants. Genotyping of 98 single nucleotide variants allowed allele frequency comparisons with public databases. Seven VWD2 mutations and 36 candidate VWD1 mutations (5 deletions, 4 nonsense, 21 missense, 1 splice, and 5 synonymous mutations) were identified. Nine mutations were found in more than one family and nine VWD1 index cases carried more than one candidate mutation. The T-allele of rs1063857 (c.2385T > C, p.Y795 = ) and blood group O were both frequent findings and contributed to disease in the Swedish VWD1 population. VWD2 mutations were found in 20 and candidate VWD1 mutations in 51 index cases out of 106 (48%). VWF mutations, a VWF haplotype, and blood group O all contributed to explain disease in Swedish VWD1 patients.