Unknown

Dataset Information

0

Lactate supports a metabolic-epigenetic link in macrophage polarization


ABSTRACT: Description Macrophages use mitochondrial lactate metabolism for ACLY-dependent histone acetylation, immune suppression, and tumor progression. Lactate accumulation is a hallmark of solid cancers and is linked to the immune suppressive phenotypes of tumor-infiltrating immune cells. We report herein that interleukin-4 (IL-4)–induced M0 → M2 macrophage polarization is accompanied by interchangeable glucose- or lactate-dependent tricarboxylic acid (TCA) cycle metabolism that directly drives histone acetylation, M2 gene transcription, and functional immune suppression. Lactate-dependent M0 → M2 polarization requires both mitochondrial pyruvate uptake and adenosine triphosphate–citrate lyase (ACLY) enzymatic activity. Notably, exogenous acetate rescues defective M2 polarization and histone acetylation following mitochondrial pyruvate carrier 1 (MPC1) inhibition or ACLY deficiency. Lastly, M2 macrophage–dependent tumor progression is impaired by conditional macrophage ACLY deficiency, further supporting a dominant role for glucose/lactate mitochondrial metabolism and histone acetylation in driving immune evasion. This work adds to our understanding of how mitochondrial metabolism affects macrophage functional phenotypes and identifies a unique tumor microenvironment (TME)–driven metabolic-epigenetic link in M2 macrophages.

SUBMITTER: Noe J 

PROVIDER: S-EPMC8589316 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4217119 | biostudies-literature
| S-EPMC7418020 | biostudies-literature
| S-EPMC7187927 | biostudies-literature
| S-EPMC3968399 | biostudies-literature
| S-EPMC7267778 | biostudies-literature
2019-08-06 | GSE110456 | GEO
| S-EPMC4974480 | biostudies-literature
| S-EPMC5111504 | biostudies-literature
| S-SCDT-EMBOR-2022-54685V1 | biostudies-other