Unknown

Dataset Information

0

ScAPAatlas: an atlas of alternative polyadenylation across cell types in human and mouse.


ABSTRACT: Alternative polyadenylation (APA) has been widely recognized as a crucial step during the post-transcriptional regulation of eukaryotic genes. Recent studies have demonstrated that APA exerts key regulatory roles in many biological processes and often occurs in a tissue- and cell-type-specific manner. However, to our knowledge, there is no database incorporating information about APA at the cell-type level. Single-cell RNA-seq is a rapidly evolving and powerful tool that enable APA analysis at the cell-type level. Here, we present a comprehensive resource, scAPAatlas (http://www.bioailab.com:3838/scAPAatlas), for exploring APA across different cell types, and interpreting potential biological functions. Based on the curated scRNA-seq data from 24 human and 25 mouse normal tissues, we systematically identified cell-type-specific APA events for different cell types and examined the correlations between APA and gene expression level. We also estimated the crosstalk between cell-type-specific APA events and microRNAs or RNA-binding proteins. A user-friendly web interface has been constructed to support browsing, searching and visualizing multi-layer information of cell-type-specific APA events. Overall, scAPAatlas, incorporating a rich resource for exploration of APA at the cell-type level, will greatly help researchers chart cell type with APA and elucidate the biological functions of APA.

SUBMITTER: Yang X 

PROVIDER: S-EPMC8728290 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7200215 | biostudies-literature
| S-EPMC8299648 | biostudies-literature
| S-EPMC7511944 | biostudies-literature
| S-EPMC7329304 | biostudies-literature
| PRJEB15336 | ENA
| S-EPMC8494635 | biostudies-literature
| S-EPMC6063945 | biostudies-literature
| S-EPMC7426093 | biostudies-literature
| S-EPMC1414089 | biostudies-other