Ontology highlight
ABSTRACT: Background
α-Humulene is a plant-derived monocyclic sesquiterpenoid with multiple pharmacological activities, and far-reaching potential for the development of new drugs. Currently, the production of α-humulene is typically achieved via plant extraction, which is not sustainable and limited by low yields. The oleaginous yeast Candida tropicalis has recently emerged as a valuable host for producing high-value-added chemicals. However, the potential of C. tropicalis for terpenoid production has not been exploited.Results
In this study, C. tropicalis was engineered for de novo synthesis of α-humulene from glucose. To improve α-humulene production, the codon-optimised α-humulene synthase gene and the entire endogenous farnesyl diphosphate synthesis pathway were co-overexpressed. Furthermore, bottlenecks in the α-humulene synthase pathway were identified and relieved by overexpressing α-humulene synthase, acetoacetyl-CoA thiolase and NADH-dependent HMG-CoA reductase. Combined with fermentation medium optimisation, the engineered strain produced 195.31 mg/L of α-humulene in shake flasks and 4115.42 mg/L in a bioreactor through fed-batch fermentation, a 253- and 5345-fold increase over the initial production, respectively.Conclusions
This study demonstrates the potential of C. tropicalis for α-humulene production, and presents a platform for the biosynthesis of other terpenoids.
SUBMITTER: Zhang L
PROVIDER: S-EPMC9137083 | biostudies-literature | 2022 May
REPOSITORIES: biostudies-literature
Zhang Lihua L Yang Haiquan H Xia Yuanyuan Y Shen Wei W Liu Liming L Li Qi Q Chen Xianzhong X
Biotechnology for biofuels and bioproducts 20220526 1
<h4>Background</h4>α-Humulene is a plant-derived monocyclic sesquiterpenoid with multiple pharmacological activities, and far-reaching potential for the development of new drugs. Currently, the production of α-humulene is typically achieved via plant extraction, which is not sustainable and limited by low yields. The oleaginous yeast Candida tropicalis has recently emerged as a valuable host for producing high-value-added chemicals. However, the potential of C. tropicalis for terpenoid productio ...[more]