Project description:It has been 40 years since the report of long-term synaptic plasticity on the rodent brain. Transcranial ultrasound stimulation (TUS) shows advantages in spatial resolution and penetration depth when compared with electrical or magnetic stimulation. The repetitive TUS (rTUS) can induce cortical excitability alteration on animals, and persistent aftereffects were observed. However, the effects of rTUS on synaptic plasticity in humans remain unelucidated. In the current study, we applied a 15-min rTUS protocol to stimulate left primary motor cortex (l-M1) in 24 male healthy participants. The single-pulsed transcranial magnetic stimulation-evoked motor evoked potential and Stop-signal task was applied to measure the rTUS aftereffects. Here, we report that conditioning the human motor cortex using rTUS may produce long-lasting and statistically significant effects on motor cortex excitability as well as motor behavior, without harmful side effects observed. These findings suggest a considerable potential of rTUS in cortical plasticity modulation and clinical intervention for impulsivity-related disorders.
Project description:Transcranial focused ultrasound (FUS) is making progress as a new non-invasive mode of regional brain stimulation. Current evidence of FUS-mediated neurostimulation for humans has been limited to the observation of subjective sensory manifestations and electrophysiological responses, thus warranting the identification of stimulated brain regions. Here, we report FUS sonication of the primary visual cortex (V1) in humans, resulting in elicited activation not only from the sonicated brain area, but also from the network of regions involved in visual and higher-order cognitive processes (as revealed by simultaneous acquisition of blood-oxygenation-level-dependent functional magnetic resonance imaging). Accompanying phosphene perception was also reported. The electroencephalo graphic (EEG) responses showed distinct peaks associated with the stimulation. None of the participants showed any adverse effects from the sonication based on neuroimaging and neurological examinations. Retrospective numerical simulation of the acoustic profile showed the presence of individual variability in terms of the location and intensity of the acoustic focus. With exquisite spatial selectivity and capability for depth penetration, FUS may confer a unique utility in providing non-invasive stimulation of region-specific brain circuits for neuroscientific and therapeutic applications.
Project description:As transcranial ultrasound stimulation (TUS) advances as a precise, non-invasive neuromodulatory method, there is a need for consistent reporting standards to enable comparison and reproducibility across studies. To this end, the International Transcranial Ultrasonic Stimulation Safety and Standards Consortium (ITRUSST) formed a subcommittee of experts across several domains to review and suggest standardised reporting parameters for low intensity TUS, resulting in the guide presented here. The scope of the guide is limited to reporting the ultrasound aspects of a study. The guide and supplementary material provide a simple checklist covering the reporting of: (1) the transducer and drive system, (2) the drive system settings, (3) the free field acoustic parameters, (4) the pulse timing parameters, (5) in situ estimates of exposure parameters in the brain, and (6) intensity parameters. Detailed explanations for each of the parameters, including discussions on assumptions, measurements, and calculations, are also provided.
Project description:BackgroundVarying treatment outcomes in transcranial electrical stimulation (tES) recipients may depend on the amount of current reaching the brain. Brain atrophy associated with normal aging may affect tES current delivery to the brain. Computational models have been employed to compute predicted tES current inside the brain. This study is the largest study that uses computational models to investigate tES field distribution in healthy older adults.MethodsIndividualized head models from 587 healthy older adults (mean = 73.9years, 51-95 years) were constructed to create field maps. Two electrode montages (F3-F4, M1-SO) with 2 mA input current were modeled using ROAST with modified codes. A customized template of healthy older adults, the UFAB-587, was created from the same dataset and used to warp individual brains into the same space. Warped models were analyzed to determine the relationship between computed field measures, brain atrophy and age.Main resultsComputed field measures were inversely correlated with brain atrophy (R2 = 0.0829, p = 1.14e-12). Field pattern showed negative correlation with age in brain sub-regions including part of DLPFC and precentral gyrus. Mediation analysis revealed that the negative correlation between age and current density is partially mediated by brain-to-CSF ratio.ConclusionsComputed field measures showed decreasing amount of tES current reaching the brain with increasing atrophy. Therefore, adjusting current dose by modifying tES stimulation parameters in older adults based on degree of atrophy may be necessary to achieve desired stimulation benefits. Results from this study may inform future tES application in healthy older adults.
Project description:BackgroundClassically, studies adopting non-invasive transcranial electrical stimulation have placed greater importance on the position of the primary "stimulating" electrode than the secondary "reference" electrode. However, recent current density modeling suggests that ascribing a neutral role to the reference electrode may prove an inappropriate oversimplification.HypothesisWe set out to test the hypothesis that the behavioral effects of transcranial electrical stimulation are critically dependent on the position of the return ("reference") electrode.MethodsWe examined the effect of transcranial alternating current stimulation (sinusoidal waveform with no direct current offset at a peak-to-peak amplitude of 2000 μA and a frequency matched to each participant's peak tremor frequency) on physiological tremor in a group of healthy volunteers (N = 12). We implemented a sham-controlled experimental protocol where the position of the stimulating electrode remained fixed, overlying primary motor cortex, whilst the position of the return electrode varied between two cephalic (fronto-orbital and contralateral primary motor cortex) and two extracephalic (ipsilateral and contralateral shoulder) locations. We additionally controlled for the role of phosphenes in influencing motor output by assessing the response of tremor to photic stimulation, through self-reported phosphene ratings.ResultsAltering only the position of the return electrode had a profound behavioral effect: only the montage with extracephalic return contralateral to the primary stimulating electrode significantly entrained physiological tremor (15.9% ± 6.1% increase in phase stability, 1 S.E.M.). Photic stimulation also entrained tremor (11.7% ± 5.1% increase in phase stability). Furthermore, the effects of electrical stimulation are distinct from those produced from direct phosphene induction, in that the latter were only seen with the fronto-orbital montage that did not affect the tremor.ConclusionThe behavioral effects of transcranial alternating current stimulation appear to be critically dependent on the position of the reference electrode, highlighting the importance of electrode montage when designing experimental and therapeutic protocols.
Project description:Nonpharmacologic and nonsurgical transcranial modulation of the nerve function may provide new opportunities in evaluation and treatment of cranial nerve diseases. This study investigates the possibility of using low-intensity transcranial focused ultrasound (FUS) to selectively stimulate the rat abducens nerve located above the base of the skull. FUS (frequencies of 350 kHz and 650 kHz) operating in a pulsed mode was applied to the abducens nerve of Sprague-Dawley rats under stereotactic guidance. The abductive eyeball movement ipsilateral to the side of sonication was observed at 350 kHz, using the 0.36-msec tone burst duration (TBD), 1.5-kHz pulse repetition frequency (PRF), and the overall sonication duration of 200 msec. Histologic and behavioral monitoring showed no signs of disruption in the blood brain barrier (BBB), as well as no damage to the nerves and adjacent brain tissue resulting from the sonication. As a novel functional neuro-modulatory modality, the pulsed application of FUS has potential for diagnostic and therapeutic applications in diseases of the peripheral nervous system.
Project description:Ultrasound is an important theragnostic modality in modern medicine. Technical advancement of both acoustic focusing and transcranial delivery have enabled administration of ultrasound waves to localized brain areas with few millimeters of spatial specificity and penetration depth sufficient to reach the thalamus. Transcranial focused ultrasound (tFUS) given at a low acoustic intensity has been shown to increase or suppress the excitability of region-specific brain areas. The neuromodulatory effects can outlast the sonication, suggesting the possibility of inducing neural plasticity needed for neurorehabilitation. Increasing numbers of studies have shown the efficacy and excellent safety profile of the technique, yet comparisons among the safety-related parameters have not been compiled. This review aims to provide safety information and perspectives of tFUS brain stimulation. First, the acoustic parameters most relevant to thermal/mechanical tissue damage are discussed along with regulated parameters for existing ultrasound therapies/diagnostic imaging. Subsequently, the parameters used in studies of large animals, non-human primates, and humans are surveyed and summarized in terms of the acoustic intensity and the mechanical index. The pulse-mode operation and the use of low ultrasound frequency for tFUS-mediated brain stimulation warrant the establishment of new safety guidelines/recommendations for the use of the technique among healthy volunteers, with additional cautionary requirements for its clinical translation.
Project description:Recent evidence indicates that transcranial ultrasound stimulation (TUS) modulates sensorimotor cortex excitability. However, no study has assessed possible TUS effects on the excitability of deeper brain areas, such as the brainstem. In this study, we investigated whether TUS delivered on the substantia nigra, superior colliculus, and nucleus raphe magnus modulates the excitability of trigeminal blink reflex, a reliable neurophysiological technique to assess brainstem functions in humans. The recovery cycle of the trigeminal blink reflex (interstimulus intervals of 250 and 500 ms) was tested before (T0), and 3 (T1) and 30 min (T2) after TUS. The effects of substantia nigra-TUS, superior colliculus-TUS, nucleus raphe magnus-TUS and sham-TUS were assessed in separate and randomized sessions. In the superior colliculus-TUS session, the conditioned R2 area increased at T1 compared with T0, while T2 and T0 values did not differ. Results were independent of the interstimulus intervals tested and were not related to trigeminal blink reflex baseline (T0) excitability. Conversely, the conditioned R2 area was comparable at T0, T1, and T2 in the nucleus raphe magnus-TUS and substantia nigra-TUS sessions. Our findings demonstrate that the excitability of brainstem circuits, as evaluated by testing the recovery cycle of the trigeminal blink reflex, can be increased by TUS. This result may reflect the modulation of inhibitory interneurons within the superior colliculus.
Project description:The modeling of transcranial magnetic stimulation (TMS)-induced electric fields (E-fields) is a versatile technique for evaluating and refining brain targeting and dosing strategies, while also providing insights into dose-response relationships in the brain. This review outlines the methodologies employed to derive E-field estimations, covering TMS physics, modeling assumptions, and aspects of subject-specific head tissue and coil modeling. We also summarize various numerical methods for solving the E-field and their suitability for various applications. Modeling methodologies have been optimized to efficiently execute numerous TMS simulations across diverse scalp coil configurations, facilitating the identification of optimal setups or rapid cortical E-field visualization for specific brain targets. These brain targets are extrapolated from neurophysiological measurements and neuroimaging, enabling precise and individualized E-field dosing in experimental and clinical applications. This necessitates the quantification of E-field estimates using metrics that enable the comparison of brain target engagement, functional localization, and TMS intensity adjustments across subjects. The integration of E-field modeling with empirical data has the potential to uncover pivotal insights into the aspects of E-fields responsible for stimulating and modulating brain function and states, enhancing behavioral task performance, and impacting the clinical outcomes of personalized TMS interventions.