Identification and genomic characterization of a blaNDM-5-harbouring MDR plasmid in a carbapenem-resistant Escherichia coli ST410 strain isolated from a natural water environmental source.
Identification and genomic characterization of a <i>bla</i> <sub>NDM-5</sub>-harbouring MDR plasmid in a carbapenem-resistant <i>Escherichia coli</i> ST410 strain isolated from a natural water environmental source.
Project description:Objectives: The aim of this research was to investigate the clinical and microbiological characteristics of a case of community-acquired carbapenem-resistant Escherichia coli isolated from a patient with a bloodstream infection in China. Methods: Escherichia coli Huamei202001 was recovered from the first blood culture from a patient hospitalised in China. An antimicrobial susceptibility test was performed, and the genome was sequenced on an Illumina HiSeq X 10 platform with a 150-bp paired-end approach. The generated sequence reads were assembled using Unicycler, and the whole genome sequence data were analysed using bioinformatics tools. Moreover, the patient and her main family members obtained a faecal sample screening test for CRE, the positive strain was further isolated and the identification and antimicrobial susceptibility testing was performed. Results: Escherichia coli Huamei202001 belonged to sequence type 410. In addition, a blaNDM-5-encoding IncX3-type plasmid was responsible for the spreading of carbapenem resistance. Only the patient was detected as having a positive faecal sample screening test for CRE. Strain Fec01 was identified as E. coli, and the antibiotic susceptibility profile was the same as that of E. coli Huamei202001. Conclusions: Escherichia coli Huamei202001 is defined as community-acquired carbapenem-resistant Enterobacteriaceae. The clone ST410 that harbours the blaNDM-5-encoding IncX3-type plasmid is causing new high-risk clones globally. Thus, infection control measures should be strengthened to curb the dissemination of IncX3.
Project description:To date, blaNDM and blaKPC genes have been found predominantly in clinical settings around the world. In contrast, bacteria harbouring these two genes from natural environments are relatively less well studied compared to those found in clinical settings. In this study, a carbapenem-resistant Raoultella ornithinolytica strain, WLK218, was isolated from urban river sediment in Zhengzhou City, Henan Province, China. This isolate was subjected to PCR and antimicrobial susceptibility testing. PCR results showed that this isolate was positive for both the blaNDM-1 and blaKPC-2 genes. The antimicrobial susceptibility testing results showed that this isolate exhibited resistance or intermediate resistance to all the antibiotics tested except for streptomycin (susceptible) and cefepime (susceptible-dose dependent). The complete genome sequence of the WLK218 isolate was then determined by using a combination of the PacBio and Illumina sequencing technologies. The de novo assembly of the genome generated one chromosome and six plasmids. Among the six plasmids, the blaNDM-1 gene was carried on the IncX3 plasmid pWLK-NDM, while the blaKPC-2 gene was located on the untypeable plasmid pWLK-KPC. This is the first report of an environmental Raoultella ornithinolytica isolate co-harbouring the blaNDM-1 and blaKPC-2 genes.
Project description:A carbapenem-resistant Escherichia coli strain C-SRM-3 was isolated from hospital wastewater effluent in Hangzhou city, China in March 2022. Analysis of the whole genome sequence showed that this blaNDM-13-positive strain belonged to an internationally recognized high-risk clone ST410 responsible for the dissemination of carbapenem resistance in E. coli. This isolate displayed a multidrug-resistant phenotype and carried a cassette of antibiotic-resistant genes. blaNDM-13 gene was successfully transferred to the recipient E. coli C600 via conjugation. WGS results revealed that blaNDM-13 gene was located on an IncI1 type plasmid replicon. The phylogenetic reconstruction showed that wastewater-sourced C-SRM-3 strain was located in a single branch, far removed from human-derived and animal-sourced isolates. The detection of blaNDM-13 in hospital wastewater suggests that continuous monitoring of antibiotic-resistant genes in the environment is critical for the prevention of carbapenem-resistant bacteria spreading.
Project description:The spread of carbapenemase-producing Enterobacteriaceae (CPE) poses a serious threat to clinical practice and public health. These bacteria are present both in clinical settings and non-clinical environments. The presence of CPE in food stuffs has been reported, but sporadically so. Here, we screened for CPE in meat, seafood, and vegetable samples from local markets of Yangon, Myanmar. We obtained 27 CPE isolates from 93 food samples and identified 13 as Escherichia coli, six as Klebsiella pneumoniae, seven as Enterobacter cloacae complex, and one as Serratia marcescens. All except the E. cloacae complex harboured the carbapenemase genes blaNDM-1 or blaNDM-5, while all Enterobacter isolates carried the carbapenemase gene blaIMI-1. The blaIMI-1 gene was located in putative mobile elements EcloIMEX-2, -3, or -8. Using multi-locus sequence typing, E. coli, K. pneumoniae, and E. cloacae complex isolates were classified into 10, six, and five different sequence types, respectively. Our results demonstrate that diverse organisms with various carbapenemase genes are widespread in the market foods in Yangon, highlighting the need for promoting proper food hygiene and effective measures to prevent further dissemination.
Project description:Dissemination of blaNDM, which is carried on the IncX3 plasmid, among Enterobacterales has been reported worldwide. In particular, blaNDM-5-carrying IncX3 plasmids can spread among several hosts, facilitating their dissemination. Other variants, such as blaNDM-17-, blaNDM-19-, blaNDM-20-, blaNDM-21-, and blaNDM-33-carrying IncX3 plasmids, have also been reported. Here, we characterized, using whole-genome sequencing (WGS), a blaNDM-16b-carrying IncX3 plasmid harbored by Escherichia coli strain TA8571, which was isolated from a urine specimen of a hospital inpatient in Tokyo, Japan. The blaNDM-16b differed in sequence from blaNDM-5 (C > T at site 698, resulting in an Ala233Val substitution). This blaNDM-16b-carrying IncX3 plasmid (pTMTA8571-1) is 46,161 bp in length and transferred via conjugation. Transconjugants showed high resistance to β-lactam antimicrobials (except for aztreonam). Because pTMTA8571-1, which carries the Tn125-related region containing blaNDM and conjugative transfer genes, was similar to the previously reported IncX3 plasmids, we performed phylogenetic analysis based on the sequence of 34 shared genes in 142 blaNDM-carrying IncX3 plasmids (22,846/46,923 bp). Comparative analysis of the shared genes revealed short branches on the phylogenetic tree (average of 1.08 nucleotide substitutions per shared genes), but each blaNDM variant was divided into separate groups, and the structure of the tree correlated with the flowchart of blaNDM nucleotide substitutions. The blaNDM-carrying IncX3 plasmids may thereby have evolved from the same ancestral plasmid with subsequent mutation of the blaNDM. Therefore, pTMTA8571-1 likely emerged from a blaNDM-5-carrying IncX3 plasmid. This study suggested that the spread of blaNDM-carrying IncX3 plasmids may be a hotbed for the emergence of novel variants of blaNDM. IMPORTANCE blaNDM-carrying IncX3 plasmids have been reported worldwide. Harbored blaNDM variants were mainly blaNDM-5, but there were also rare variants like blaNDM-17, blaNDM-19, blaNDM-20, blaNDM-21, and blaNDM-33, including blaNDM-16b detected in this study. For these plasmids, previous reports analyzed whole genomes or parts of sequences among a small number of samples, whereas, in this study, we performed an analysis of 142 blaNDM-carrying IncX3 plasmids detected around the world. The results showed that regardless of the blaNDM variants, blaNDM-carrying IncX3 plasmids harbored highly similar shared genes. Because these plasmids already spread worldwide may be a hotbed for the emergence of rare or novel variants of blaNDM, increased attention should be paid to blaNDM-carrying IncX3 plasmids in the future.
Project description:Carbapenem resistance in Acinetobacter baumannii is due to bla OXA-23, which is endemic in India. Recently, the sporadic presence of bla OXA-58 as well as the occurrence of dual carbapenemases were observed. The mobility as well as the dissemination of these resistance genes were mainly mediated by various mobile genetic elements. The present study was aimed at characterizing the genetic arrangement of bla OXA-23, bla NDM-1 and bla OXA-58 identified in two complete genomes of carbapenem-resistant A. baumannii (CRAB). Complete genomes obtained using a hybrid-assembly approach revealed the accurate arrangement of Tn2006 with bla OXA-23, ISAba125 with bla NDM and ISAba3 with bla OXA-58. In addition, the association of IntI1 integrase with the bla CARB-2 gene and several virulence factors required for type-IV pili assembly, motility and biofilm formation have been identified. The current study provided deeper insight into the complete characterization of insertion sequences and transposons associated with the carbapenem-resistant genes using short reads of IonTorrent PGM and long reads of MinIon in A. baumannii .
Project description:The widespread emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) with limited therapeutic options has become a global concern. In this study, a K. pneumoniae strain called KP2e was recovered from a human case of fatal septic shock in a Chinese hospital. Polymerase chain reaction and sequencing, antimicrobial susceptibility testing, conjugation experiments, S1 nuclease-pulsed field gel electrophoresis/southern blot, whole genome sequencing and comparative genomics were performed to investigate the phenotypic and molecular characteristics of this isolate. KP2e possessed the NDM-6-encoding gene and exhibited resistance to almost all β-lactams except for monobactam. This strain belonged to sequence type 4024, the complete genome of which was composed of one chromosome and three plasmids. Furthermore, bla NDM-6 coexisted on two self-transmissible plasmids, which were assigned to types IncFIB and IncN. A structure of IS26-composite transposon capturing an identical Tn125 remnant (ΔISAba125-bla NDM-6 -ble MBL -trpF-dsbC-cutA-groES-ΔgroEL) was identified in the two plasmids, and this conserved bla NDM -surrounding genetic context was similar to that of few IncN plasmids found in other regions of China. Our research appears to be the first description of a clinical strain that emerged co-harbouring dual bla NDM -carrying plasmids, and the first report of NDM-6-positive CRKP in China. These findings demonstrated that IncN is a key medium in the evolution and expanding dissemination of bla NDM genes among various species, which indicates that close monitoring and rapid detection of bla NDM -harbouring plasmids is necessary.
Project description:PurposeCarbapenem resistance is rarely reported in Salmonella Typhimurium, especially from a food origin. Here, we report a plasmid-mediated mobile carbapenem-resistant blaNDM-5 gene in Salmonella Typhimurium isolated from pork in Shanghai, China in 2016.Patients and methodsIn July 2016, the S. Typhimurium SH160 strain was recovered from minced pork meat purchased from a supermarket in Yangpu District, Shanghai, China. Antimicrobial susceptibility testing, multi-locus sequence typing, conjugation, S1-PFGE, southern hybridization, whole-genome sequencing and data analysis were performed.ResultsThis isolate was found to be a ST34 strain and resistant to carbapenems, cephalosporins, and most other commonly used antibiotics. The blaNDM-5 gene was harbored by a 46161-bp IncX3 plasmid which was found to be transferable. The IncX3 plasmid contains a composite cassette, consisting of ISSwil-IS3000-ΔISAba125-IS5-blaNDM-5-bleMBL-trpF-dsbC-IS26-ctuA1-ΔumuD. In addition, this strain was found to harbor an additional 161706-bp IncHI2 plasmid which carries nine resistant genes, such as aadA1, aadA3, aph(3')-la, sul1, sul2, sul3, floR, cmlA and dfrA12.ConclusionWe reported the S. Typhimurium with transferable IncX3 plasmid harboring blaNDM-5 gene from minced pork. We characterized the complete genetic features of the plasmid, which demonstrated the potential for spreading in different bacterial pathogens. Therefore, extensive surveillance and monitoring for carbapenem-resistant bacterium in the food chain and public health are urgently required.
Project description:ObjectiveA strain of Proteus penneri with carbapenem resistance was found in a patient with a diabetic foot infection. We studied drug resistance, genome, and homology of P. penneri to support clinical prevention and treatment of infection caused by carbapenem-resistant P. penneri (CR-PPE).MethodsThe strains were obtained through bacterial culture from purulence. VITEK 2 compact (GN13) and Kirby-Bauer (K-B) disk diffusion methods were used for antimicrobial susceptibility testing. Ceftriaxone, amikacin, gentamicin, ampicillin, aztreonam, ceftazidime, ciprofloxacin, levofloxacin, cefepime, trimethoprim-sulfamethoxazole, tobramycin, cefotetan, piperacillin-tazobactam, ampicillin-sulbactam, ertapenem, piperacillin, meropenem, cefuroxime, cefazolin, cefoperazone/sulbactam, cefoxitin, and imipenem were used for antimicrobial susceptibility testing. After bacterial genome extraction, sequencing, and sequence assembly, whole-genome sequencing (WGS) was performed to explore the CR-PPE genotype.ResultsCR-PPE was resistant to two carbapenems (imipenem and ertapenem), ceftriaxone, and cefazolin, and was sensitive to aztreonam, piperacillin-tazobactam, and cefotetan. WGS results depict that the resistant phenotype of CR-PPE is consistent with the genotype, without common virulence genes of Enterobacteriaceae bacteria detected (virulence factor database). The carbapenem resistance gene blaNMD-1 is contained in a new plasmid, pWF127-NDM. The transposon Tn125 in pWF127-NDM carrying blaNMD-1 has almost the same structure as Tn125 in the reference plasmid pHFK418-NDM (Accession: MH491967). In addition, through phylogenetic analysis, CR-PPE depicts the closest evolutionary relationship with GCF 024129515.1, which was found in Gallus gallus in the Czech Republic in 2019 (downloaded from National Center for Biotechnology Information database). According to the evolutionary tree, CR-PPE has high homology with the two P. penneri strains found in China.ConclusionCR-PPE exhibits strong drug resistance owing to the presence of multiple resistance genes. CR-PPE infection should receive more attention, especially in patients with underlying diseases, such as diabetes and weak immunity.
Project description:ObjectivesWe identified a novel hybrid plasmid simultaneously carrying bla NDM-1 and bla IMP-4 in an ST20-K28 carbapenem-resistant Klebsiella pneumoniae (CRKP) strain AZS099 and reported its detailed genetic and phenotypic characterization.MethodsAntimicrobial susceptibility was characterized using broth microdilution method. Complete genome characteristics and plasmid detailed analysis were carried out by PacBio Sequel and Illumina sequencing and further bioinformatics analysis. Conjugation assay, S1-PFGE, Southern blot, plasmid stability, and fitness cost were conducted to the phenotypic characterization of this novel hybrid plasmid.ResultsAZS099 was isolated from a blood specimen obtained from a 3-month baby who presented with biliary tract infection. Susceptibility testing showed that AZS099 was resistant to almost all β-lactams examined, including cephalosporins, combinations of β-lactams and β-lactamase inhibitors, carbapenems, and aztreonam. PacBio and Illumina sequencing together with S1-PFGE and Southern blot showed that bla NDM-1 and bla IMP-4 were simultaneously located on a 296 kb IncFIB(K)/IncHI1B/IncX3 plasmid (pAZS099-NDM-IMP), which consists of four main parts that came from four different types of plasmids. The region harboring bla IMP-4 is located in a class 1 integron designated as In0, which is located in an IS6100-IS26 transposon-like structure with a total length of ~5 kb. The region harboring bla NDM-1 is located in the Tn125 transposon remnant. Conjugation and transformation assay confirmed that the plasmid pAZS099-NDM-IMP has the potential for horizontal transfer and displayed high stability (retention rate > 95%). Furthermore, growth curve assessment confirmed that the presence of pAZS099-NDM-IMP exhibits no growth pressure on bacteria.ConclusionOur research reported a hybrid plasmid coharboring bla NDM-1 and bla IMP-4 in an ST20-K28 CRKP strain. The emergence of novel hybrid plasmid could threaten the control of antimicrobial resistance and should be closely supervised.