Ontology highlight
ABSTRACT:
SUBMITTER: Maffei C
PROVIDER: S-EPMC9453851 | biostudies-literature | 2022 Aug
REPOSITORIES: biostudies-literature
Maffei Chiara C Girard Gabriel G Schilling Kurt G KG Aydogan Dogu Baran DB Adluru Nagesh N Zhylka Andrey A Wu Ye Y Mancini Matteo M Hamamci Andac A Sarica Alessia A Teillac Achille A Baete Steven H SH Karimi Davood D Yeh Fang-Cheng FC Yildiz Mert E ME Gholipour Ali A Bihan-Poudec Yann Y Hiba Bassem B Quattrone Andrea A Quattrone Aldo A Boshkovski Tommy T Stikov Nikola N Yap Pew-Thian PT de Luca Alberto A Pluim Josien J Leemans Alexander A Prabhakaran Vivek V Bendlin Barbara B BB Alexander Andrew L AL Landman Bennett A BA Canales-Rodríguez Erick J EJ Barakovic Muhamed M Rafael-Patino Jonathan J Yu Thomas T Rensonnet Gaëtan G Schiavi Simona S Daducci Alessandro A Pizzolato Marco M Fischi-Gomez Elda E Thiran Jean-Philippe JP Dai George G Grisot Giorgia G Lazovski Nikola N Puch Santi S Ramos Marc M Rodrigues Paulo P Prčkovska Vesna V Jones Robert R Lehman Julia J Haber Suzanne N SN Yendiki Anastasia A
NeuroImage 20220526
Limitations in the accuracy of brain pathways reconstructed by diffusion MRI (dMRI) tractography have received considerable attention. While the technical advances spearheaded by the Human Connectome Project (HCP) led to significant improvements in dMRI data quality, it remains unclear how these data should be analyzed to maximize tractography accuracy. Over a period of two years, we have engaged the dMRI community in the IronTract Challenge, which aims to answer this question by leveraging a un ...[more]