Screening of serum IgG glycosylation biomarker for primary Sjögren's syndrome using lectin microarray
Ontology highlight
ABSTRACT: Glycan profiles of serum IgG from 40 PSS patients, 50 PBC patients, and 38 healthy controls were detected with lectin microarray containing 56 lectins.
Project description:BackgroundPrimary Sjögren's syndrome (PSS) is a systemic autoimmune disease resulting in significant loss of systemic gland secretory function. IgG glycosylation abnormalities had been found to play important roles in autoimmune diseases. Here, we aim to explore the specific changes of IgG glycosylation in PSS patient serum that could serve as potential biomarkers for disease diagnosis and differential diagnosis.MethodFrom 2012 to 2018, patients diagnosed with PSS or primary biliary cholangitis (PBC) admitted consecutively to the department of Rheumatology at Peking Union Medical College Hospital were retrospectively included in this study. Glycan profiles of serum IgG from 40 PSS patients, 50 PBC patients, and 38 healthy controls were detected with lectin microarray containing 56 lectins. Lectins with significantly different signal intensity among groups were selected and validated by lectin blot assay.ResultsLectin microarray analysis revealed that binding levels of Amaranthus Caudatus Lectin (ACL, prefers glycan Galβ3GalNAc, P = 0.011), Morniga M Lectin (MNA-M, prefers glycan mannose. P = 0.013), and Lens Culinaris Agglutinin (LCA, prefers glycan fucose) were significantly increased, while Salvia sclarea Agglutinin (SSA, prefers glycan sialylation, P = 0.001) was significantly decreased in PSS patients compared to PBC group. Compared to healthy controls, MNA-M (P = 0.001) and LCA (P = 0.028) were also significantly increased, while Phaseolus Vulgaris Erythroagglutinin and Phaseolus Vulgaris Leucoagglutinin (PHA-E and PHA-L, prefer glycan galactose, P = 0.004 and 0.006) were significantly decreased in PSS patients. The results of LCA and MNA-M were further confirmed using lectin blot assay.ConclusionChanges in serum IgG glycosylation in PSS increased binding levels of LCA and MNA-M lectins using microarray techniques compared to PBC patients and healthy controls, which could provide potential diagnostic value. Increased core fucose and mannose alteration of IgG may play important roles in PSS disease.
Project description:BackgroundInflammation plays a key role in the progression of atherosclerotic plaque for peripheral artery disease (PAD). Immunoglobulin G (IgG) glycosylation could modulate immunological effector functions and has been explored as biomarkers for various diseases.MethodsLectin microarray was applied to analyze the expression profile of serum IgG glycosylation in patients with lower-extremity peripheral artery disease (LEPAD), carotid artery stenosis (CAS), abdominal aortic aneurysm (AAA), and healthy controls. Lectin blot was performed to validate the differences.ResultsSNA (Sambucus nigra agglutinin) binding (preferred sialic acid) was significantly higher in the LEPAD (3.21 ± 2.06) and AAA (3.34 ± 2.42) groups compared to the CAS (2.47 ± 1.45) group. Significantly higher binding levels of ConA (Concanavalin A) (preferred mannose) and PSA (Pisum sativum agglutinin) (preferred fucose) were also observed in LEPAD compared to CAS patients. Among LEPAD patients, a significant lower binding level of Black bean crude (preferred GalNAc) was present for dyslipidemia patients. A higher binding level of MNA-M (Morniga M agglutinin) (preferred Mannose) and Jacalin-AIA (Artocarpus integrifolia agglutinin) (preferred Galβ3GalNAc) was observed for Fontaine severe patients. Higher binding levels of PHA-E (Phaseolus vulgaris Erythroagglutinin) and PHA-L (Phaseolus vulgaris Leucoagglutinin) (preferred Galβ4GlcNAc) were observed for diabetic patients, and higher binding of ASA (Allium sativum agglutinin) (preferred Mannose) was present in patients with hypertension. The level of high-sensitivity C-reactive protein (hsCRP) was positively associated with LTL (Lotus tetragonolobus lectin) (r = 0.44), PSA (r = 0.44), LCA (Lens Culinaris agglutinin) (r = 0.39), SNA (r = 0.57), and CSA (Cytisus sscoparius agglutinin) (r = 0.56). For CAS, symptomatic patients had lower binding levels of AAL (Aleuria aurantia lectin) (preferred fucose) and IAA (Iberis amara agglutinin) (preferred GalNAc). Blood total cholesterol level was positively associated with SNA-I (r = 0.36) and SBA (Soybean agglutinin) (r = r = 0.35). Creatinine levels were positively associated with lectins including, but not limited to, MNA-M (r = 0.42), CSA (r = 0.45), GHA (Glechoma hederacea agglutinin) (r = 0.42), and MNA-G (Morniga G agglutinin) (r = 0.45).ConclusionLEPAD patients had increased IgG binding levels of SNA and ConA compared to CAS, which could provide potential diagnostic value. Fontaine severity was associated with Mannose-rich IgG N-glycan, while diabetic LEPAD correlated with bisecting GlcNAc. The levels of hsCRP and creatinine were positively associated with IgG fucosylation and galactosylation. Changes in IgG glycosylation may play important roles in PAD pathogenesis and progression.
Project description:Glycosylation is one of the most abundant and functionally important protein post-translational modifications. As such, technology for efficient glycosylation analysis is in high demand. Lectin microarrays are a powerful tool for such investigations and have been successfully applied for a variety of glycobiological studies. However, most of the current lectin microarrays are primarily constructed from plant lectins, which are not well suited for studies of human glycosylation because of the extreme complexity of human glycans. Herein, we constructed a human lectin microarray with 60 human lectin and lectin-like proteins. All of the lectins and lectin-like proteins were purified from yeast, and most showed binding to human glycans. To demonstrate the applicability of the human lectin microarray, human sperm were probed on the microarray and strong bindings were observed for several lectins, including galectin-1, 7, 8, GalNAc-T6, and ERGIC-53 (LMAN1). These bindings were validated by flow cytometry and fluorescence immunostaining. Further, mass spectrometry analysis showed that galectin-1 binds several membrane-associated proteins including heat shock protein 90. Finally, functional assays showed that binding of galectin-8 could significantly enhance the acrosome reaction within human sperms. To our knowledge, this is the first construction of a human lectin microarray, and we anticipate it will find wide use for a range of human or mammalian studies, alone or in combination with plant lectin microarrays.
Project description:Colorectal cancer (CRC) is one of the most common types of cancer among men and women worldwide. Efforts are currently underway to find novel and more cancer-specific biomarkers that could be detected in a non-invasive way. The analysis of aberrant glycosylation of serum glycoproteins is a way to discover novel diagnostic and prognostic CRC biomarkers. The present study investigated a whole-serum glycome with a panel of 16 different lectins in search for age-independent and CRC-specific glycomarkers using receiver operating characteristic (ROC) curve analyses and glycan heat matrices. Glycosylation changes present in the whole serum were identified, which could lead to the discovery of novel biomarkers for CRC diagnostics. In particular, the change in the bisecting glycans (recognized by Phaseolus vulgaris erythroagglutinin) had the highest discrimination potential for CRC diagnostics in combination with human L selectin providing area under the ROC curve (AUC) of 0.989 (95% CI 0.950-1.000), specificity of 1.000, sensitivity of 0.900, and accuracy of 0.960. We also implemented novel tools for identification of lectins with strong discrimination power.
Project description:Lectins, plant-derived glycan-binding proteins, have long been used to detect glycans on cell surfaces. However, the techniques used to characterize serum or cells have largely been limited to mass spectrometry, blots, flow cytometry, and immunohistochemistry. While these lectin-based approaches are well established and they can discriminate a limited number of sugar isomers by concurrently using a limited number of lectins, they are not amenable for adaptation to a high-throughput platform. Fortunately, given the commercial availability of lectins with a variety of glycan specificities, lectins can be printed on a glass substrate in a microarray format to profile accessible cell-surface glycans. This method is an inviting alternative for analysis of a broad range of glycans in a high-throughput fashion and has been demonstrated to be a feasible method of identifying binding-accessible cell surface glycosylation on living cells. The current unit presents a lectin-based microarray approach for analyzing cell surface glycosylation in a high-throughput fashion.
Project description:Glycans or carbohydrates attached to therapeutic glycoproteins can directly affect product quality, safety and efficacy, and therefore must be adequately analyzed and controlled throughout product life cycles. However, the complexity of protein glycosylation poses a daunting analytical challenge. In this study, we evaluated the utility of a lectin microarray for assessing protein glycans. Using commercial lectin chips, which contain 45 lectins toward distinct glycan structures, we were able to determine the lectin binding patterns of a panel of 15 therapeutic proteins, including 8 monoclonal antibodies. Lectin binding signals were analyzed to generate glycan profiles that were generally consistent with the known glycan patterns for these glycoproteins. In particular, the lectin-based microarray was found to be highly sensitive to variations in the terminal carbohydrate structures such as galactose versus sialic acid epitopes. These data suggest that lectin microarray could be used for screening glycan patterns of therapeutic glycoproteins.
Project description:BackgroundTakayasu arteritis (TAK) is an autoimmune inflammatory disorder with an undefined etiology. This study aimed to characterize the glycosylation profiles of serum immunoglobulin G (IgG) in patients with TAK.MethodsLectin microarrays containing 56 types of lectins were used to detect the glycan levels of serum IgG in 164 patients with TAK, 128 patients with atherosclerosis used as disease controls (DCs), and 100 healthy controls (HCs). Differentially altered glycosylation patterns between TAK and control groups as well as between TAK subgroups were identified and further validated by lectin blot. The classification performance of the TAK-specific glycosylation change was measured by receiver-operating characteristic (ROC) curve analysis.ResultsLectin microarray analysis revealed significantly increased N-Acetylgalactosamine (GalNAc) levels in the TAK group compared to the DC and HC groups (all p < 0.01). For TAK subgroups, significantly decreased mannosylation was observed in patients with active TAK compared to patients with inactive disease (p < 0.01). These differences were validated by lectin blot. In addition, GalNAc levels exhibited a considerable potential for discriminating patients with TAK from patients with atherosclerosis, with an area under the curve of 0.749 (p < 0.001), a sensitivity of 71.7%, and a specificity of 73.8%.ConclusionsSerum IgG in patients with TAK displayed disease-specific glycosylation alterations. Aberrant GalNAc glycosylation showed substantial value as a diagnostic biomarker. The potential proinflammatory properties of the abnormal glycans may provide new insights into the role of humoral immunity in the pathogenesis of TAK.
Project description:BackgroundRA is a common chronic and systemic autoimmune disease, and the diagnosis is based significantly on autoantibody detection. This study aims to investigate the glycosylation profile of serum IgG in RA patients using high-throughput lectin microarray technology.MethodLectin microarray containing 56 lectins was applied to detect and analyze the expression profile of serum IgG glycosylation in 214 RA patients, 150 disease controls (DC), and 100 healthy controls (HC). Significant differential glycan profiles between the groups of RA and DC/HC as well as RA subgroups were explored and verified by lectin blot technique. The prediction models were created to evaluate the feasibility of those candidate biomarkers.ResultsAs a comprehensive analysis of lectin microarray and lectin blot, results showed that compare with HC or DC groups, serum IgG from RA patients had a higher affinity to the SBA lectin (recognizing glycan GalNAc). For RA subgroups, RA-seropositive group had higher affinities to the lectins of MNA-M (recognizing glycan mannose) and AAL (recognizing glycan fucose), and RA-ILD group had higher affinities to the lectins of ConA (recognizing glycan mannose) and MNA-M while a lower affinity to the PHA-E (recognizing glycan Galβ4GlcNAc) lectin. The predicted models indicated corresponding feasibility of those biomarkers.ConclusionLectin microarray is an effective and reliable technique for analyzing multiple lectin-glycan interactions. RA, RA-seropositive, and RA-ILD patients exhibit distinct glycan profiles, respectively. Altered levels of glycosylation may be related to the pathogenesis of the disease, which could provide a direction for new biomarkers identification.
Project description:BACKGROUND:Altered glycosylation associated with hepatocellular carcinoma (HCC) is well documented. However, few reports have investigated the association between dedifferentiation and glycosylation. Therefore, the aim of this study was to analyze glycosylation associated with dedifferentiation of HCC within the same nodule and to investigate glycosyltransferase related to the glycosylation. METHODS:We analyzed resected HCC specimens (n?=?50) using lectin microarray to comprehensively and sensitively analyze glycan profiles, and identify changes to glycosylation between well- and moderately-differentiated components within the same nodule. Moreover, we performed immunohistochemical staining of mannosyl(?-1,3-)-glycoprotein ?-1,2-N-acetylglucosaminyltransferase (MGAT1), which is an essential glycosyltransferase that converts high-mannose glycans to complex- or hybrid-type N-glycans. RESULTS:Four lectins from Narcissus pseudonarcissus agglutinin (NPA), Concanavalin A, Galanthus nivalis agglutinin, and Calystegia sepium agglutinin were significantly elevated in moderately-differentiated components of HCC compared with well-differentiated components, and all lectins showed binding specificity to high-mannose glycans. Therefore, these structures were represented to a greater extent in moderately-differentiated components than in well-differentiated ones. Immunohistochemical staining revealed significantly increased NPA expression and decreased MGAT1 expression in moderately-differentiated components. Low MGAT1 expression in moderately-differentiated components of tumors was associated with intrahepatic metastasis and had tendency for poor prognosis. CONCLUSION:Dedifferentiation of well-differentiated HCC is associated with an increase in high-mannose glycans. MGAT1 may play a role in the dedifferentiation of HCC.
Project description:We used lectin microarray and mass spectrometric analysis to identify the N-linked glycosylation patterns of hepatitis C virus (HCV) particles. HCV J6/JFH-1 chimeric cell culture (HCVcc) in the culture supernatant was concentrated and purified by ultrafiltration and sucrose gradient ultracentrifugation. Twelve fractions were collected from the top and analyzed for viral infectivity and HCV RNA content after sucrose gradient separation. HCV RNA and proteins were separated by ultracentrifugation in a continuous 10% to 60% sucrose gradient to purify viral particles based on their sedimentation velocities. HCVcc particles were found mainly in fractions 6 to 8, as determined by quantitative polymerase chain reaction (qPCR) analysis for HCV RNA and ELISA of the HCV core protein. The N-glycans on HCV proteins were analyzed by lectin microarray and mass spectrometry. We identified that 32 of 37 lectins displayed the positive binding signals and 16 types of N-glycoforms of which the major HCV glycoforms were high mannose-type N-linked oligosaccharides, hybrid N-glycans, and fucosylated N-glycans. Our study provided new detailed information regarding the majority of the glycan-protein profile, complementing to previous findings of glycan-HCV protein interactions.