Methylation in Taiwanese HCC tumor and adjacent tissues
Ontology highlight
ABSTRACT: We analyzed tumor and adjacent non-tumor tissues from 62 Taiwanese HCC cases using Illumina HumanMethylation 27 chips. After Bonferroni adjustment, a total of 2,324 CpG sites significantly differed in methylation level, with 684 CpG sites significantly hypermethylated and 1,640 hypomethylated in tumor compared to non-tumor tissues. Array data were validated with pyrosequencing in a subset of 5 of these genes; correlation coefficients ranged from 0.92 to 0.97. 62 tumor and 62 adjacent non tumor tissues
Project description:We analyzed tumor and adjacent non-tumor tissues from 62 Taiwanese HCC cases using Illumina HumanMethylation 27 chips. After Bonferroni adjustment, a total of 2,324 CpG sites significantly differed in methylation level, with 684 CpG sites significantly hypermethylated and 1,640 hypomethylated in tumor compared to non-tumor tissues. Array data were validated with pyrosequencing in a subset of 5 of these genes; correlation coefficients ranged from 0.92 to 0.97. 62 tumor and 62 adjacent non tumor tissues
Project description:We analyzed tumor and adjacent non-tumor tissues from 62 Taiwanese HCC cases using Illumina HumanMethylation 27 chips. After Bonferroni adjustment, a total of 2,324 CpG sites significantly differed in methylation level, with 684 CpG sites significantly hypermethylated and 1,640 hypomethylated in tumor compared to non-tumor tissues. Array data were validated with pyrosequencing in a subset of 5 of these genes; correlation coefficients ranged from 0.92 to 0.97.
Project description:T lymphocytes, which recognize antigen peptides through specific T cell receptors (TCRs), play an important role in the human adaptive immune response. TCR diversity is closely associated with host immune response and cancer prognosis. Although tumor-infiltrating T lymphocytes have implications for tumor prognosis, few studies have performed a detailed characterization of TCR diversity in both tumor and non-tumor tissues in hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC). Here, we performed high-throughput sequencing of the TCRβ chain complementarity determining region 3 (CDR3) of liver-infiltrating T cells from 48 HBV-associated HCC patients. A significantly higher average number of CDR3 aa clonotypes (2259 vs. 1324, p < 0.001), and significantly higher TCR diversity (Gini coefficient, p < 0.001; Simpson index, p < 0.01; Shannon entropy, p < 0.001) were observed in tumor tissues compared with adjacent non-tumor tissues. The ratio of highly expanded clones (HECs) was significantly higher in non-tumor tissues than in tumor tissues when the HEC threshold was defined as 2% or greater (p < 0.05). Our analysis of the median Morisita-Horn index indicated weak TCR repertoire similarity between tumor and matched non-tumor tissues. The median number of shared clones in tumor tissue and matched non-tumor tissue from each patient was 360.5, representing 5.1-15.8% (10.6 ± 0.4%) of all clones in each patient. We observed extensive heterogeneity of T lymphocytes in tumors and higher HEC ratios in adjacent non-tumor tissues of HCC patients. The differential T cell repertoires in tumor and non-tumor tissues suggest a distinct T cell immune microenvironment in patients with HBV-associated HCC.
Project description:MicroRNAs (miRNAs) are aberrant expressed in hepatocellular carcinoma (HCC) tissue and play a central role in diverse biological processes. We conducted a genome-wide miRNAs screening in 10 pairs of HCC tumor and adjacent non-tumor tissues to test the hypothesis that dysregulation of miRNAs in HCC tumor tissue are partially due to aberrant methylation in relevant miRNAs host genes. Taqman low density arrays were used to examine miRNA profiles in paired HCC tissues, and quantitative RT-PCR was used to validate candidate miRNAs for both discovery and validation sets. A cross-sectional study was conducted in 10 HCC tumor tissues and 10 adjacent non-tumor tissues in Columbia University Medical Center (CUMC), which is approved by the Institutional Review Board.
Project description:MicroRNAs (miRNAs) are aberrant expressed in hepatocellular carcinoma (HCC) tissue and play a central role in diverse biological processes. We conducted a genome-wide miRNAs screening in 10 pairs of HCC tumor and adjacent non-tumor tissues to test the hypothesis that dysregulation of miRNAs in HCC tumor tissue are partially due to aberrant methylation in relevant miRNAs host genes. Taqman low density arrays were used to examine miRNA profiles in paired HCC tissues, and quantitative RT-PCR was used to validate candidate miRNAs for both discovery and validation sets.
Project description:Nasopharyngeal carcinoma (NPC) is one of the common malignant tumors, accounting for first place in head and neck malignant tumors. Nonkeratinizing carcinoma (NKC) is the major histologic type of NPC. We performed Transcriptional profiling of NKC comparing tumor with adjacent non-tumor tissues using. Goal was to identify and investigate dryregulated lncRNAs and mRNA in NKC at genome-wide scale.
Project description:BackgroundBreast carcinogenesis is a multistep process involving genetic and epigenetic changes. Tumor tissues are frequently characterized by gene-specific hypermethylation and global DNA hypomethylation. Aberrant DNA methylation levels have, however, not only been found in tumors, but also in tumor-surrounding tissue appearing histologically normal. This phenomenon is called field cancerization. Knowledge of the existence of a cancer field and its spread are of clinical relevance. If the tissue showing pre-neoplastic lesions is not removed by surgery, it may develop into invasive carcinoma.MethodsWe investigated the prevalence of gene-specific and global DNA methylation changes in tumor-adjacent and tumor-distant tissues in comparison to tumor tissues from the same breast cancer patients (n = 18) and normal breast tissues from healthy women (n = 4). Methylation-sensitive high resolution melting (MS-HRM) analysis was applied to determine methylation levels in the promoters of APC, BRCA1, CDKN2A (p16), ESR1, HER2/neu and PTEN, in CDKN2A exon 2 and in LINE-1, as indicator for the global DNA methylation extent. The methylation status of the ESR2 promoter was determined by pyrosequencing.ResultsTumor-adjacent and tumor-distant tissues frequently showed pre-neoplastic gene-specific and global DNA methylation changes. The APC promoter (p = 0.003) and exon 2 of CDKN2A (p < 0.001) were significantly higher methylated in tumors than in normal breast tissues from healthy women. For both regions, significant differences were also found between tumor and tumor-adjacent tissues (p = 0.001 and p < 0.001, respectively) and tumor and tumor-distant tissues (p = 0.001 and p < 0.001, respectively) from breast cancer patients. In addition, tumor-adjacent (p = 0.002) and tumor-distant tissues (p = 0.005) showed significantly higher methylation levels of CDKN2A exon 2 than normal breast tissues serving as control. Significant correlations were found between the proliferative activity and the methylation status of CDKN2A exon 2 in tumor (r = -0.485, p = 0.041) and tumor-distant tissues (r = -0.498, p = 0.036).ConclusionsFrom our results we can conclude that methylation changes in CDKN2A exon 2 are associated with breast carcinogenesis. Further investigations are, however, necessary to confirm that hypermethylation of CDKN2A exon 2 is associated with tumor proliferative activity.
Project description:Genome wide DNA methylation profiling of lung adenocarcinoma and non-tumor adjacent tissues. The Illumina Infinium 450k Human DNA methylation Beadchip was used to obtain DNA methylation profiles. Samples included eight lung cancer and adjacent non-tumor tissues excised from a cohort of 8 patients with lung adenocarcinoma.
Project description:Overexpression of ABCB1, ABCC1 and ABCG2 in tumor tissues is considered a major cause of limited efficacy of anticancer drugs. Gene expression of ABC transporters is regulated by multiple mechanisms, including changes in the DNA methylation status. Most of the studies published so far only report promoter methylation levels for either ABCB1 or ABCG2, and data on the methylation status for ABCC1 are scarce. Thus, we determined the promoter methylation patterns of ABCB1, ABCC1 and ABCG2 in 19 human cancer cell lines. In order to contribute to the elucidation of the role of DNA methylation changes in acquisition of a multidrug resistant (MDR) phenotype, we also analyzed the promoter methylation patterns in drug-resistant sublines of the cancer cell lines GLC-4, SW1573, KB-3-1 and HL-60. In addition, we investigated if aberrant promoter methylation levels of ABCB1, ABCC1 and ABCG2 occur in tumor and tumor-surrounding tissues from breast cancer patients.Our data indicates that hypomethylation of the ABCC1 promoter is not cancer type-specific but occurs in cancer cell lines of different origins. Promoter methylation was found to be an important mechanism in gene regulation of ABCB1 in parental cancer cell lines and their drug-resistant sublines. Overexpression of ABCC1 in MDR cell models turned out to be mediated by gene amplification, not by changes in the promoter methylation status of ABCC1. In contrast to the promoters of ABCC1 and ABCG2, the promoter of ABCB1 was significantly higher methylated in tumor tissues than in tumor-adjacent and tumor-distant tissues from breast cancer patients.